计算机与现代化 ›› 2025, Vol. 0 ›› Issue (10): 44-50.doi: 10.3969/j.issn.1006-2475.2025.10.008

• 人工智能 • 上一篇    下一篇

FA-CGRNet:无创高血糖预测的分类模型

  


  1. (东华理工大学信息工程学院,江西 南昌 330013)
  • 出版日期:2025-10-27 发布日期:2025-10-27
  • 作者简介: 作者简介:王蕾(1979—),女,湖北黄陂人,教授,博士,研究方向:三维点云,三维重建,E-mail: wlei598@163.com; 赵康(1998—),男,湖北宜昌人,硕士研究生,研究方向:大数据分析与预测,E-mail: 995016971@qq.com。
  • 基金资助:
      基金项目:国家自然科学基金资助项目(62261001); 江西省核地学数据科学与系统工程技术研究中心基金资助项目(JELRGBDT202202); 江西省放射性地学大数据技术工程实验室开放基金资助项目(JELRGBDT202103)
       

FA-CGRNet: Non-invasive Classification Model for Hyperglycemia Prediction


  1. (School of Information Engineering, East China University of Technology, Nanchang 330013, China)
  • Online:2025-10-27 Published:2025-10-27

摘要:
摘要:现有的血糖检测方法多具创伤性,带来诸多不便和潜在风险。若能通过可穿戴设备获取生理数据及用户自输入的饮食数据,实时预测用户是否为高血糖,将能显著简化血糖检测过程。为了提高预测的精确度,本文提出一种基于深度学习的时间序列分类模型—FA-CGRNet。首先,对生理数据进行降噪、重采样等预处理,提取其统计特征。随后,设计残差卷积网络,通过卷积和残差连接实现特征的提取和融合,同时利用特征增强模块计算特征权重,对特征进行筛选。最后,采用LSTM模型提取时间序列的长期依赖特征,以充分捕捉时序特征。在杜克大学BIG IDEAs实验室发布的公开数据集上进行测试,实验结果表明,在无创血糖检测领域,本文提出的特征提取方法和网络模型,与现有的时间序列分类模型相比,能更好地区分正负例,加权F1分数提高了6.1%以上,AUC提高了2.5%以上。


关键词: 关键词:无创高血糖预测, 残差卷积, 长短期记忆网络, 特征增强模块, 神经网络

Abstract:  
Abstract: Current blood glucose detection methods are often invasive, causing inconvenience and potential risks. A non-invasive method using wearable devices to collect physiological data and user-input dietary information for real-time high blood glucose prediction is proposed. To improve prediction accuracy, a deep learning-based time series classification model, FA-CGRNet, is developed. Physiological data are preprocessed through denoising and resampling. Statistical features are extracted. A residual convolutional network is designed to extract and fuse features through convolution and residual connections. A feature enhancement module is utilized to calculate feature weights and perform feature selection. Finally, an LSTM model is employed to extract long-term dependency features from time series data. The model is tested on a public dataset from the BIG IDEAs Lab at Duke University. In the field of non-invasive blood glucose detection, the feature extraction method and network model presented in this study demonstrated superior performance compared to existing time series classification models. The model’s ability to distinguish between positive and negative cases is significantly enhanced. Notably, the weighted F1 score is improved by over 6.2%, while the AUC is increased by more than 2.5%. These results underscore the effectiveness of the proposed approach in advancing non-invasive blood glucose monitoring techniques.

Key words: Key words: non-invasive hyperglycemia prediction, residual convolutional, LSTM, feature enhancement module, neural network

中图分类号: