计算机与现代化 ›› 2025, Vol. 0 ›› Issue (08): 48-56.doi: 10.3969/j.issn.1006-2475.2025.08.007

• 信息安全 • 上一篇    下一篇

基于不平衡电力通信流量的入侵检测方法

  


  1. (1.广东电网有限责任公司电力科学研究院,广东 广州 510080; 2.广东电力装备可靠性企业重点实验室(广东电网有限责任公司电力科学研究院),广东 广州 510080; 3.南京邮电大学,江苏 南京 210003)
  • 出版日期:2025-08-27 发布日期:2025-08-27
  • 作者简介: 作者简介:谢善益(1971—),男,浙江宁波人,教授级高级工程师,硕士,研究方向:电力物联网网络安全,E-mail: kways@126.com; 王中奥(1970 —),男,海南琼海人,高级经济师,硕士,研究方向:网络安全,E-mail: 624909679@qq.com; 占聪聪(1996—),男,江西九江人,工程师,硕士,研究方向:电力物联网网络安全; 李兴旺(1985—),男,甘肃武威人,高级工程师,硕士,研究方向:电力设备监测及分析,E-mail: lxw02146@foxmail.com; 通信作者:夏浩然(2000 —),男,河南商丘人,软件工程师,硕士,研究方向:人工智能,网络安全等,E-mail: 1256574723@qq.com。
  • 基金资助:
     基金项目:中国南方电网有限责任公司科技项目(GDKJXM20222701); 国家自然科学基金资助项目(62176264)
       

A Intrusion Detection Method Based on Imbalanced Power Communication Traffic 

  1. (1. Electric Power Research Institute, Guangdong Power Grid Co., Ltd., Guangzhou 510080, China; 2. Key Laboratory of Power Equipment Reliability for Enterprises in Guangdong (Electric Power Research Institute of Guangdong Power Grid Co., Ltd.), Guangzhou 510080, China; 3. Nanjing University of Posts and Telecommunications, Nanjing 210003, China) 
  • Online:2025-08-27 Published:2025-08-27

摘要:
摘要:随着互联网的普及,网络安全问题变得日益突出。在电力通信网络中,确保网络安全至关重要。然而,电力通信网络面临的挑战是电力通信网络中的流量往往存在正常流量与异常流量之间的数量差异,以及异常流量中不同类型流量的不均匀分布。为此,本文提出一种基于电力通信流量不平衡的入侵检测方法,并命名为GSMOTE-EAVA。GSMOTE-EAVA首先利用递归特征消除法对数据进行预处理和特征选取,通过计算特征的重要性,筛选出关键的特征;其次,为了解决数据不平衡的挑战,利用基于高斯噪声的SMOTE算法对通信流量进行数据增强,以便神经网络模型更好地学习和适应各种情况;最后,基于决策树、随机森林、KNN、DNN等基分类器,设计一种集成自适应投票算法实现电力通信网络流量的入侵检测。通过在IEC 60870-5-104入侵检测数据集和CICIDS2017数据集上进行实验,本文提出的模型在四分类下对数据集中小样本类别的检测率有显著提升,能够有效地识别和处理电力通信网络中的异常流量。

     


关键词: 关键词:网络安全, 机器学习, 递归特征消除法, 入侵检测, 深度神经网络

Abstract: Abstract: With the proliferation of the Internet, cybersecurity issues have become increasingly prominent. Ensuring network security is crucial within electric power communication networks. However, one challenge faced by these networks is the disparity in the volume between normal and abnormal traffic, as well as the uneven distribution among different types of abnormal traffic. To address this issue, this paper proposes an intrusion detection method for imbalanced electric power communication traffic, named GSMOTE-EAVA. GSMOTE-EAVA firstly utilizes Recursive Feature Elimination for data preprocessing and feature selection by calculating the importance of features to identify the most critical ones. Secondly, to tackle the challenge of data imbalance, a Gaussian noise-based SMOTE algorithm is employed to augment the communication traffic data, thus enhancing the neural network model’s ability to learn and adapt to various situations. Finally, an ensemble adaptive voting algorithm based on classifiers like decision trees, random forests, KNN, and DNN is designed to implement intrusion detection in electric power communication network traffic. Through experiments on the IEC 60870-5-104 intrusion detection dataset and CICIDS2017 dataset, the proposed model significantly improves the detection rate of small sample categories in the dataset under four classifications, and can effectively identify and deal with abnormal traffic in the power communication network.

Key words: Key words: network security, machine learning, recursive feature elimination, intrusion detection, deep neural network

中图分类号: