计算机与现代化 ›› 2025, Vol. 0 ›› Issue (06): 16-20.doi: 10.3969/j.issn.1006-2475.2025.06.003

• 人工智能 • 上一篇    下一篇

面向隐私保护的企业财务舞弊识别模型

  

  1. (中国海洋大学管理学院,山东 青岛 266100)
  • 出版日期:2025-06-30 发布日期:2025-07-01
  • 作者简介:作者简介:薛文学(1992—),男,内蒙古赤峰人,采购战略分析主管,硕士,研究方向:资本效率,财务风险,E-mail: xwx646@stu.ouc.edu.cn; 解英德(1993—),女,山东滨州人,硕士,研究方向:资本市场,公司财务,E-mail: 157425219@qq.com。
  • 基金资助:
    基金项目:国家重点基础研究发展计划资助项目(2022YFC1503532); 山东省科技计划项目(2023-SD-T11)

Privacy-preservation Models for Identifying Financial Fraud in Enterprises

  1. (School of Management, Ocean University of China, Qingdao 266100, China)
  • Online:2025-06-30 Published:2025-07-01

摘要:
摘要:为了规避敏感数据的法律和经济障碍,有效识别企业的财务舞弊行为,采用隐私保护的思想构建了基于机器学习的财务舞弊识别模型。基于2012年到2021年的19334个样本的财务和非财务信息,引入互联网信息,构建面向隐私保护的企业财务舞弊识别模型(Hetero-SBoost和Hetero-NN)。实验结果表明引入互联网信息后,本文模型比传统模型提升了7%~10%的性能,说明引入互联网信息有助于提高识别效果,在合规的基础上进一步实现模型优化。为了进一步验证本文模型在实际应用中的准确性,基于来自山东12个公司的3452个样本数据,与先进模型(DeepProtect、Starlit)进行效果对比。结果表明,Hetero-SBoost保证了模型的整体性能,具有更加稳健的模型效果。本文在不公开数据的前提下完成了财务舞弊识别建模;引入互联网信息和隐私保护后,验证了模型有效性。

关键词: 关键词:财务舞弊, 隐私保护, 机器学习, 财务信息

Abstract:
Abstract: To avoid legal and economic barriers to sensitive data and effectively identify financial fraud in enterprises, a machine learning based financial fraud identification model was constructed using the concept of privacy protection. Based on the financial and non-financial information of 19,334 samples from 2012 to 2021, the Internet information was introduced to build a privacy-preservation oriented identification model of enterprise financial fraud (Hetero-SBoost and Hetero-NN). The results show that the proposed model after the introduction of Internet information, the performance of the optimized models were 7%~10% higher than that of the traditional models, indicating that the introduction of Internet information helps to improve the recognition effect and further optimize the model on the basis of compliance. To further verify the accuracy of that the proposed model in practical applications, a comparison was made between 3,452 samples from 12 companies in Shandong and the results of advanced models (DeepProtect, Starlite). The results indicate that Hetero-SBoost ensures the overall performance of the model and has better robustness. This paper completes the financial fraud recognition modeling without disclosing data. The introduction of Internet information and privacy protection verifies the effectiveness of the identification model.

Key words: Key words: financial fraud, privacy protection, machine learning, financial information

中图分类号: