计算机与现代化 ›› 2025, Vol. 0 ›› Issue (07): 90-96.doi: 10.3969/j.issn.1006-2475.2025.07.013

• 人工智能 • 上一篇    下一篇

融合Bi-LSTM残差网络的充电设施复杂故障诊断方法

  


  1. (1.国网电力科学研究院有限公司,江苏 南京 211137; 2.国电南瑞南京控制系统有限公司,江苏 南京 211106;
    3.国网江苏省电力有限公司营销服务中心,江苏 南京 211106; 4.东南大学电气工程学院,江苏 南京 210096)
  • 出版日期:2025-07-22 发布日期:2025-07-22
  • 作者简介: 作者简介:邓超(1988—),男,江苏南京人,工程师,硕士,研究方向:电动汽车有序充电,E-mail: dengchao@sgepri.sgcc.com.cn; 通信作者:杨凤坤(1988—),女,山东临沂人,高级工程师,硕士,研究方向:电动汽车与电网互动,E-mail: fkyang20424@163.com; 李珺(1982—),女,湖北枣阳人,高级工程师,硕士,研究方向:电能计量; 陈良亮(1975—),男,河南信阳人,研究员级高级工程师,博士,研究方向:智能用电,智能运维; 郭志冲(2000—),男,浙江东阳人,硕士研究生,研究方向:智能用电。
  • 基金资助:
     基金项目:国家电网公司总部科技项目(5700-202318272A-1-1-ZN)

Complex Fault Diagnosis Method of Charging Facilities Based on Bi-LSTM Residual Network


  1. (1. State Grid Electric Power Research Institute, Nanjing 211137, China; 2. NARI-TECH Control System LTD., Nanjing 211106, China; 3. Marketing Service Center, State Grid Jiangsu Electric Power Company, Nanjing 211106, China;
    4. School of Electrical Engineering, Southeast University, Nanjing 210096, China)
  • Online:2025-07-22 Published:2025-07-22

摘要: 摘要:随着电动汽车的快速发展,充电设施的可靠性和安全性成为保障用户安全和提升用户体验的关键因素。针对传统故障诊断方法因数据标注不足而无法适用于复杂故障诊断的局限性,从充电设施的维修工单和历史运营工单的角度,提出一种融合Bi-LSTM残差网络的充电设施复杂故障诊断方法。该方法通过提取原始订单与工单中的有效特征,利用残差网络将Bi-LSTM的时序特征与原始特征进行融合,最终将融合的特征输入至机器学习模型中实现充电设施复杂故障诊断任务。实验结果表明,该方法较机器学习模型在复杂故障诊断任务上均有明显的提升效果。


关键词: 关键词:充电设施, 故障诊断, Bi-LSTM, 残差网络, 机器学习

Abstract:
Abstract: With the rapid development of electric vehicles, the reliability and safety of charging facilities have become the key factors to ensure user safety and enhance user experience. In view of the limitation that traditional fault diagnosis methods are not suitable for complex fault diagnosis due to insufficient data annotaion, this paper proposes a complex fault diagnosis method of charging facilities based on Bi-LSTM (Bidirectional Long Short-Term Memory Network) residual network from the perspective of maintenance work orders and historical operation work orders of charging facilities. This method extracts the effective features from the original orders and work orders, fuses the time series features of Bi-LSTM with the original features by using residual network, and finally inputs the fused features into the machine learning model to realize the complex fault diagnosis task of charging facilities. Experimental results show that this method has obvious improvement effect on complex fault diagnosis tasks compared with machine learning model.

Key words: Key words: charging facilities, fault diagnosis, Bi-LSTM, residual network, machine learning

中图分类号: