计算机与现代化 ›› 2024, Vol. 0 ›› Issue (06): 109-114.doi: 10.3969/j.issn.1006-2475.2024.06.018

• 信息系统 • 上一篇    下一篇

基于改进XGBoost模型的网络入侵检测研究

  

  1. (鞍钢集团信息产业有限公司,辽宁 鞍山 114000)
  • 出版日期:2024-06-30 发布日期:2024-07-17
  • 作者简介:苏凯旋(1978—),男,辽宁鞍山人,高级工程师,硕士,研究方向:信息安全,E-mail: sukx@ansteel.com.cn。 ​

Network Intrusion Detection Based on Improved XGBoost Model


  1. (Information Industry Co., LTD., Anshan 114000, China)

  • Online:2024-06-30 Published:2024-07-17

摘要: 摘要:为了提升传统的网络入侵检测模型的检测准确性和实用性,本文提出一种基于改进梯度提升树(XGBoost)模型的网络入侵检测方法。首先,采用随机森林算法预计关键特征点,在数据的预处理阶段有效地选取了重要性权重最高的特征并构建特征集合;其次,利用卡单方程改进了XGBoost模型的预测方法;最后,在XGBoost优化算法中引入代价敏感函数来提升算法对小样本数据的检测率,应用网格法调参减少模型复杂性。实验结果表明,与其它人工智能算法对比,所提出的模型在具有更高检验精度的情况下降低了50%以上等待时间,并且在噪音环境下具有较强的可扩展性和自适应性,并结合其他模型设置参数消融实验,实验结果表明树深对模型性能影响最大。




关键词: 关键词:入侵检测, 特征选择, 随机森林, XGBoost, 代价敏感函数

Abstract: Abstract: In order to enhance the accuracy and practicability of the traditional network intrusion detection model, this paper proposes a network intrusion detection based on an improved gradient lift tree (XGBoost) model. Firstly, the random forest algorithm is used to predict the key feature points, and the feature with the highest importance weight is effectively selected and the feature set is constructed in the data pre-processing stage. Secondly, the prediction method of XGBoost model is improved by using card equation. Finally, the cost sensitive function is introduced into the XGBoost optimization algorithm to improve the detection rate of small sample data, and the mesh method is used to reduce the complexity of the model. Experimental simulation results show that compared with other artificial intelligence algorithms, the proposed model can reduce the waiting time by more than 50% with higher inspection accuracy, and has strong scalability and adaptability under noisy environment. Combined with other models, the experimental results show that the tree depth has the greatest impact on the model performance.

Key words: Key words: invasion detection, feature selection, random forest, XGBoost, cost sensitive function

中图分类号: