计算机与现代化 ›› 2024, Vol. 0 ›› Issue (06): 95-102.doi: 10.3969/j.issn.1006-2475.2024.06.016
摘要: 摘要:针对边缘计算环境下任务卸载过程中,老年人健康数据任务的动态到达性和信道条件的不确定性,引发的平均时延和能耗的优化问题,本文提出一种基于李雅普诺夫优化与深度强化学习结合的在线任务计算卸载优化算法。一个多用户移动边缘计算网络中的用户任务数据随机到达,应用李雅普诺夫优化方法对任务卸载过程中的队列长度进行约束和建模,深度强化学习方法利用模型信息将输入环境参数转化为学习最优的二进制卸载动作的过程,之后对卸载动作进行准确评价,通过仿真实验证明了该组合算法优于其他深度强化学习算法,并且在优化任务卸载所用能耗的同时合理约束队列长度,有效降低了数据队列长度的积压。
中图分类号: