计算机与现代化 ›› 2024, Vol. 0 ›› Issue (06): 95-102.doi: 10.3969/j.issn.1006-2475.2024.06.016

• 信息系统 • 上一篇    下一篇

面向智慧养老的边缘计算卸载方法

  



  1. (1.南京邮电大学计算机学院(软件学院、网络空间安全学院),江苏 南京 210023;
    2.江苏省无线传感网高技术研究重点实验室,江苏 南京 210023)
  • 出版日期:2024-06-30 发布日期:2024-07-17
  • 作者简介: 作者简介:李爽(1999—),女,河南驻马店人,硕士研究生,研究方向:边缘计算,E-mail: 15850778368@163.com; 叶宁(1971—),女,江苏南京人,教授,博士,研究方向:物联网信息处理,情感计算,E-mail: yening@njupt.edu.cn; 徐康(1989—),男,江苏南京人,讲师,博士,研究方向:自然语言处理,E-mail: kxu@njupt.edu.cn; 王甦(1978—),男,江苏南京人,讲师,硕士,研究方向:边缘智能计算,E-mail: wangsu@njupt.edu.cn;王汝传(1943—),男,江苏南京人,教授,研究方向:为无线传感器网络,信息安全,E-mail: wangrc@njupt.edu.cn。
  • 基金资助:
    国家自然科学基金资助项目(62272244); 江苏省科技厅重点研发计划(BE2020713)

Edge Computing Unloading Method for Intelligent Elderly Care



  1. (1. School of Computer Science, School of Software, School of Cyberspace Security, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2. Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210023, China)
  • Online:2024-06-30 Published:2024-07-17

摘要: 摘要:针对边缘计算环境下任务卸载过程中,老年人健康数据任务的动态到达性和信道条件的不确定性,引发的平均时延和能耗的优化问题,本文提出一种基于李雅普诺夫优化与深度强化学习结合的在线任务计算卸载优化算法。一个多用户移动边缘计算网络中的用户任务数据随机到达,应用李雅普诺夫优化方法对任务卸载过程中的队列长度进行约束和建模,深度强化学习方法利用模型信息将输入环境参数转化为学习最优的二进制卸载动作的过程,之后对卸载动作进行准确评价,通过仿真实验证明了该组合算法优于其他深度强化学习算法,并且在优化任务卸载所用能耗的同时合理约束队列长度,有效降低了数据队列长度的积压。


关键词: 关键词:智慧养老, 李雅普诺夫优化, 深度强化学习, 边缘计算卸载, 移动边缘计算

Abstract: Abstract: In order to solve the optimization problem of average delay and energy consumption caused by the uncertainty of the dynamic arrival and channel conditions of the elderly health data tasks during task unloading in the edge computing environment, an online task computing offloading optimization algorithm based on Lyapunov optimization and deep reinforcement learning was proposed. In a multi-user mobile edge computing network, the user task data arrived randomly. Lyapunov optimization method was applied to constrain and model the queue length in the process of task offloading. Then, the model information was utilized by deep reinforcement learning method to convert the input environment parameters into the process of learning the optimal binary offloading action, and the offloading action was accurately evaluated. The simulation results show that the proposed algorithm is superior to some deep reinforcement learning algorithms, and the energy consumption of task offloading is reduced effectively while the queue length is constrained reasonably.

Key words: Key words: smart senior care, Lyapunov optimization, deep reinforcement learing, edge computing offloading, mobile edge computing

中图分类号: