[1] Markowitz H M. Portfolio Selection: Efficient Diversification of Investments[M]. 2nd Ed. New Jersey: Wiley, 1991.
[2] Qi Yue, Wang Zhi-hao, Zhang Su. On analyzing and detecting multiple optima of portfolio optimization [J]. Journal of Industrial and Management Optimization, 2018,14(1):309-323.
[3] Qi Yue. On the criterion vectors of lines of portfolio selection with multiple quadratic and multiple linear objectives[J]. Central European Journal of Operations Research, 2017,25(1):145-158.
[4] 赵冬斌,邵坤,朱圆恒,等. 深度强化学习综述: 兼论计算机围棋的发展[J]. 控制理论与应用, 2016,33(6):701-717.
[5] 李玉鑑,张婷. 深度学习导论及案例分析[M]. 北京:机械工业出版社, 2016.
[6] 王雪松,朱美强,程玉虎. 强化学习原理及其应用[M]. 北京:科学出版社, 2014.
[7] Selvin S, Vinayakumar R, Gopalakrishnan E A, et al. Stock price prediction using LSTM, RNN and CNN-sliding window model[C]// 2017 International Conference on Advances in Computing, Communications and Informatics. 2017:1643-1647.
[8] Khare K, Darekar O, Gupta P, et al. Short term stock price prediction using deep learning[C]//2017 2nd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology. 2017:482-486.
[9] 曾志平,萧海东,张新鹏. 基于DBN的金融时序数据建模与决策[J]. 计算机技术与发展, 2017,27(4):1-5.
[10]李文鹏,高宇菲,钱佳佳,等. 深度学习在量化投资中的应用[J]. 统计与管理, 2017(8):104-106.
[11]胡文伟,胡建强,李湛,等. 基于强化学习算法的自适应配对交易模型[J]. 管理科学, 2017,30(2):148-160.
[12]Li Wei, Liao Jian. A comparative study on trend forecasting approach for stock price time series[C]//2017 11th IEEE International Conference on Anti-counterfeiting, Security, and Identification. 2017:74-78.
[13]孙瑞奇. 基于LSTM神经网络的美股股指价格趋势预测模型的研究[D]. 北京:首都经济贸易大学, 2015.
[14]Mnih V, Kavukcuoglu K, Silver D, et al. Playing Atari with deep reinforcement learning[C]// Advances in Neural Information Processing Systems. 2013:1-9.
[15]Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015,518(7540):529-533.
[16]Deng Yue, Bao Feng, Kong Youyong, et al. Deep direct reinforcement learning for financial signal representation and trading[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017,28(3):1-12.
[17]Jiang Zhengyao, Xu Dixing, Liang Jinjun. A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem [DB/OL]. https://arxiv.org/abs/1706.10059, 2017-11-30.
[18]Zhang Chi, Zhang Limian, Chen Corey. Deep Reinforcement Learning for Portfolio Management[DB/OL]. http://www-scf.usc.edu/~zhan527/post/cs599, 2017-11-18.
[19]Srivastava N, Hinton G, Krizhevsky A. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014,15(1):1929-1958.
[20]Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006,313(5786):504-507.
[21]陈学松,杨宜民. 强化学习研究综述[J]. 计算机应用研究, 2010,27(8):2835-2844.
[22]李晨溪,曹雷,张永亮,等. 基于知识的深度强化学习研究综述[J]. 系统工程与电子技术, 2017,39(11):2603-2613.
[23]Silver D, Huang Aja, Maddison C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016,529(7587):484-489.
[24]Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017,550(7676):354-359.
[25]Timothy P L, Jonathan J H, Alexander P. Continuous control with deep reinforcement learning[C]// International Conference on Learning Representations. 2016:1-14. |