计算机与现代化

• 人工智能 • 上一篇    下一篇

基于深度强化学习的计步方法

  

  1. (河海大学计算机与信息学院,江苏南京211100)
  • 收稿日期:2018-06-13 出版日期:2019-01-30 发布日期:2019-01-30
  • 作者简介:彭琛(1992-),男,福建三明人,硕士研究生,研究方向:机器学习,计步算法,E-mail: zhuan66yong@163.com; 韩立新(1967-),男,江苏南京人,博士生导师,研究方向:信息检索,数据挖掘,模式识别。

Deep Reinforcement Learning for Step Counting Approach

  1. (College of Computer and Information, Hohai University, Nanjing 211100, China)
  • Received:2018-06-13 Online:2019-01-30 Published:2019-01-30

摘要: 针对计步软件使用中用户行为不定,容易产生各种噪声以及传统算法中参数不能持续优化的问题,本文提出基于深度强化学习的计步方法。将噪声判别及步数统计作为智能体的动作,在步数统计中改进波峰检测法,提出均值穿越波峰波谷检测法。利用循环神经网络保存内部状态,将用户对计步器计步好坏的反馈作为奖励信号,指导参数持续优化。实验结果表明,该方法在采集设备放置于不同位置并且有噪声时,噪声识别率为0.9151,计步误差率为0.0623,有较高的精度以及较强的抗干扰能力。

关键词: 计步器, 深度强化学习, 均值穿越波峰波谷检测法

Abstract: In order to deal with the problem that the user’s behavior is often uncertain in the use of step counting software, which is easy to produce various noises and the parameters in traditional algorithms cannot be continuously optimized, this paper proposes the deep reinforcement learning for step counting approach. Taking the step counting and noise discrimination as the action of the agent, the wave peak detection method is improved in the step counting and the mean crossing peak detection method is proposed. Using the recurrent neural network to save the internal state, the feedback of the user on the step effect of the pedometer is used as the reward signal to guide the parameter optimization. The experimental results show that the proposed method has high precision and strong anti-interference ability when there is noise and the mobile phone is placed in different positions, in which the noise recognition rate is 0.9151 and the step counting error rate is 0.0623.

Key words:  pedometer, deep reinforcement learning, mean crosssing peak trough detection method

中图分类号: