计算机与现代化 ›› 2023, Vol. 0 ›› Issue (03): 54-59.

• 人工智能 • 上一篇    下一篇

基于深度学习的显微图像计算机辅助诊断

  

  1. (北京中医药大学管理学院,北京 102488)
  • 出版日期:2023-04-17 发布日期:2023-04-17
  • 作者简介:王艳(1998—),女,山东潍坊人,硕士研究生,研究方向:机器学习,人工智能,E-mail: wangyan_inno@163.com; 杨丰蔚(1997—),男,山西阳泉人,硕士研究生,研究方向:卫生数据分析,E-mail: yangfengwei2015@163.com; 翟兴(1981—),男,河南开封人,副教授,硕士生导师,硕士,研究方向:信息分析,健康信息学,E-mail: zhaix@bucm.edu.cn; 王丽(1979—),女,天津人,副教授,硕士生导师,硕士,研究方向:医学信息学,健康管理,E-mail: liwangli2000@126.com; 唐燕(1977—),女,河南南阳人,副教授,硕士,研究方向:医学数据分析,E-mail: tangyan97_1017@sina.com; 刘哲(1982—),男,陕西汉中人,助理研究员,研究方向:大数据,数据挖掘,E-mail: liuzhe@bucm.edu.cn; 通信作者:韩爱庆(1979—),男,河北石家庄人,副教授,硕士生导师,硕士,研究方向:医学数据分析,人工智能,E-mail: aqhan@hotmail.com。
  • 基金资助:
    教育部产学合作协同育人项目(201802003031)

Computer Aided Diagnostic on Microscopic Images Based on Deep Learning

  1. (School of Management, Beijing University of Chinese Medicine, Beijing 102488, China)
  • Online:2023-04-17 Published:2023-04-17

摘要: 根据世界卫生组织发布的报告,全球疟疾、结核病的发病率仍高居不下。手动显微镜检查厚薄载玻片和痰涂片是疟疾和结核病诊断的重要手段,这种方法的缺点之一是高度依赖医学检验师,容易出现主观误判。在低收入和发展中国家的偏远地区高技能实验室人员缺乏,加上显微图像中疟原虫和结核杆菌存在形状多变、体积较小和某些细胞体不确定等因素,导致疟原虫和结核杆菌检测困难。本文提出一种基于Faster R-CNN的改进算法,用于从显微图像中自动筛选疟原虫和结核杆菌。首先在原始Faster R-CNN框架上加入卷积滤波器层,采用深度残差网络提取特征,来提升模型的检测性能,然后评估改进后的模型在2种不同显微任务上的性能:在厚血涂片疟疾显微图像数据集上AP值达到94.55%,在痰涂片结核病显微图像数据集上AP值为97.96%,比原始Faster R-CNN模型提升了7.40个百分点和8.04个百分点。结果表明,修改后Faster R-CNN模型可以从智能手机的显微镜目镜上捕获的图像中检测疟疾寄生虫和结核杆菌位点,减少手动显微镜检查的依赖,辅助研究人员诊断,表明该模型适合部署在资源匮乏的地区。

关键词: 深度学习, Faster R-CNN, 显微图像, 疟疾, 结核病, 辅助诊断

Abstract: According to a report released by the World Health Organization, the global incidence of malaria and tuberculosis remains high. Manual microscopy of thick and thin slides and sputum smears are an important method for the diagnosis of malaria and tuberculosis, and one of the disadvantages of this approach is that it is highly dependent on medical inspectors, prone to subjective misjudgment. The lack of highly skilled laboratory personnel in remote areas of low-income and developing countries, coupled with the variable shape, small size and uncertainty of plasmodium and mycobacterium tuberculosis in microscopic images and factors of some cell body uncertainty, resulted in difficult detection of plasmodium and mycobacterium tuberculosis. This paper proposes an improved faster R-CNN-based algorithm for automatic screening of plasmodium and mycobacterium tuberculosis from microscopic images. Firstly, the proposed algorithm addes a convolutional filter layer to the original Faster R-CNN framework and uses a deep residual network to extract features to improve the detection performance of the model. Then, this paper evaluates the performance of the improved model on two different microscopy tasks: AP value reached 94.55% on the thick-blood smear malaria micrograph image dataset, and 97.96% on the sputum smear tuberculosis microscopic image dataset. Compared with the original Faster R-CNN model, the improvement is 7.40 percentage points and 8.04 percentage points. The results show that the modified Faster R-CNN model can detect plasmodium and mycobacterium tuberculosis sites from images captured on a microscope eyepiece on a smartphone, reducing the dependence on manual microscopy and assisting researchers in diagnosis, which shows that the model is suitable for deployment in under-resourced areas.

Key words: deep learning, Faster R-CNN, microscopic images, malaria, tuberculosis, auxiliary diagnosis