[1] 刘锐. 物联网技术在智能电网中的应用[J]. 无线互联科技, 2021,18(4):18-19.
[2] 汪兴. 面向智能电网建设的电力物联网架构研究[J]. 电力大数据, 2018,21(10):28-31.
[3] LIU Y, YU R, PAN M, et al. Sd-mac: Spectrum database driven mac protocol for cognitive machine-to-machine networks[J]. IEEE Transactions on Vehicular Technology, 2017,66(2):1456-1467.
[4] 张海波,李虎,陈善学,等. 超密集网络中基于移动边缘计算的任务卸载和资源优化[J]. 电子与信息学报, 2019,41(5):1194-1201.
[5] 田辉,范绍帅,吕昕晨,等. 面向5G需求的移动边缘计算[J]. 北京邮电大学学报, 2017,40(2):1-10.
[6] HUANG Y T, LU Y H, WANG F, et al. An edge computing framework for real-time monitoring in smart grid[C]// 2018 IEEE International Conference on Industrial Internet (ICII). 2018:99-108.
[7] ISLAM T, HASHEM M M A. A big data management system for providing real time services using fog infrastructure[C]// 2018 IEEE Symposium on Computer Applications & Industrial Electronics(ISCAIE). 2018:85-89.
[8] KUMAR N, ZEADALLY S, RODRIGUEJ J. Vehicular delay-tolerant networks for smart grid data management using mobile edge computing[J]. IEEE Communications Magezine, 2016,54(10):60-66.
[9] ZAHOOR S, JAVAID N, KHAN A, et al. A cloud-fog-based smart grid model for efficient resource utilization[C]// Proceedings of the 14th IEEE International Wireless Communications and Mobile Computing(IWCMC). 2018:1154-1160.
[10]LIU J, MAO Y Y, ZHANG J, et al. Delay-optimal computation task escheduling for mobile-edge computing systems[C]// 2016 IEEE International Symposium on Information Theory (ISIT). 2016:1451-1455.
[11]MAO Y Y, ZHANG J, LETAIEF K B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016,34(12):3590-3605.
[12]REN J K, YU G D, CAI Y L, et al. Latency optimization for resource allocation in mobile-edge computation offloading[J]. IEEE Transactions on Wireless Communications, 2018,17(8):5506-5519.
[13]ZHANG K, LENG S, PENG X, et al. Artificial intelligence inspired transmission scheduling in cognitive vehicular communications and networks[J]. IEEE Internet of Things Journal, 2018,6(2):1987-1997.
[14]ZHANG K, ZHU Y X, LENG S P, et al. Deep learning empowered task offloading for mobile edge computing in urban informatics[J]. IEEE Internet of Things Journal, 2019,6(5):7635-7647.
[15]HE Y, ZHAO N, YIN H X. Integrated networking, caching, and computing for connected vehicles: A deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2017,67(1):44-55.
[16]MIN M H, XU D J, XIAO L, et al. Learning based computation offloading for iot devices with energy harvesting[J]. IEEE Transactions on Wireless Communications, 2019,68(2):1930-1941.
[17]DINH T Q, LA Q D, QUEK T Q, et al. Learning for computation offloading in mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2018, 66(12):6353-6367.
[18]LUO Y, ZENG M, JIANG H. Learning to tradeoff between energy efficiency and delay in energy harvesting-powered D2D communication: A distributed experience-sharing algorithm[J]. IEEE Internet of Things Journal, 2019,6(3):5585-5594.
[19]ALSHEIKH M A, HOANG D T, NIYATO D, et al. Markov decision processes with applications in wireless sensor networks: A survey[J]. IEEE Communications Surveys and Tutorials, 2015,17(3):1239-1267.
[20]VAN HASSELT H, GUEZ A, SILVERD. Deep reinforcement learning with double Q-learning[J]. arXiv preprint arXiv:1509.06461, 2015.
[21]DAI Y Y, XU D, MAHARJAN S, et al. Blockchain and deep reinforcement learning empowered intelligent 5G beyond[J]. IEEE Network, 2019,33(3):10-17.
[22]TRAN T X, POMPILI D. Joint task offloading and resource allocation for multi-server mobile-edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2018,68(1):856-868.
[23]SARDELLITTI S, SCUTARI G, BARBAROSSA S. Joint optimization of radio and computational resources for multicell mobile-edge computing[J]. IEEE Transactions on Signal and Information Processing over Networks, 2015,1(2):89-103.
|