[1] MURTHY C B, HASHMI M F, BOKDE N D, et al. Investigations of object detection in images/videos using various deep learning techniques and embedded platforms-A comprehensive review[J]. Applied Sciences, 2020,10(9):3280.
[2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788.
[3] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[4] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[5] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. Computer Vision and Pattern Recognition, arXiv preprint arXiv:2004.10934, 2020.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[J]. arXiv preprint arXiv:1512.02325, 2016.
[7] GIRSHICK R, DONAHUE J, DARRELLT, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[8] GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1440-1448.
[9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[10]HE K M, GKIOXARI G, DOLLR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. 2017:2980-2988.
[11]LI Y C, CHEN Y T, WANG N Y, et al. Scale-aware trident networks for object detection[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision. 2019:6054-6063.
[12]ZHU C C, HE Y H, SAVVIDES M, et al. Feature selective anchor-free module for single-shot object detection [C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition. 2019:840-849.
[13]TIAN Z, SHEN C H, CHEN H, et al. FCOS: Fully convolutional one-stage object detection[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision. 2019:9627-9636.
[14]DUAN K W, BAI S, XIE L X, et al. CenterNet: Keypoint triplets for object detection[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision. 2019:6569-6578.
[15]LAW H, DENG J. CornerNet: Detecting objects as paired keypoints[C]// Proceedings of the 17th European Conference on Computer Vision. 2018:765-781.
[16]ZHOU X Y, WANG D Q, KRAHENBUHL P, et al. Objects as points[J]. arXiv preprint arXiv:1904.07850, 2019.
[17]CHEN Y J, DING Y Y, ZHAO F, et al. Surface defect detection methods for industrial products: A review[J]. Applied Sciences, 2021,11(16):7657.
[18]CZIMMERMANN T, GIUTI G, MILAZZO M, et al. Visual-based defect detection and classification approaches for industrial applications-A survey[J]. Sensors (Basel Switzerland), 2020,20(5):1-25.
[19]LUO Q W, FANG X X, LIU L, et al. Automated visual defect detection for flat steel surface: A survey[J]. IEEE Transactions on Instrumentation and Measurement, 2020,69(3):626-644.
[20]DENG H F, CHENG J H, LIU T, et al. Research on iron surface crack detection algorithm based on improved YOLOv4 network[J]. Journal of Physics: Conference Series, 2020,1631(1):012081.
[21]SHEN X H, LI Z H, LI M, et al. Aluminum surface-defect detection based on multi-task deep learning[J]. Laser & Optoelectronics Progress, 2020,57(10):101501.
[22]XU Y M, ZHANG K, WANG L. Metal surface defect detection using modified YOLO[J]. Algorithms, 2021,14(9):257.
[23]赵振兵,熊静,李冰,等. 基于改进 Cascade RCNN 的典型金具及其部分缺陷检测方法[J]. 高电压技术, 2022(3):1060-1067.
[24]李维刚,叶欣,赵云涛,等. 基于改进 YOLOv3 算法的带钢表面缺陷检测[J]. 电子学报, 2020,48(7):1284-1292.
[25]HU J, SHEN L, ALBANLE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,42(8):2011-2023.
[26]LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]// European Conference on Computer Vision. 2018:404-419.
|