[1] 张龙浩,李柏宏,贾鹏,等. 新型冠状病毒(SARS-CoV-2)全球研究现状分析[J]. 生物医学工程学杂志, 2020,37(2):236-245.
[2] 虞乔木,郑东桦. 新冠肺炎疫情防控常态化研究[J]. 中国公共安全(学术版), 2020(1):65-68.
[3] KIFLE Z D. COVID-19: An update on current therapeutic drugs and vaccines[J]. Journal of Applied Pharmacy, 2021,13(4).
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and segmentation[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[5] GIRSHICK R. Fast R-CNN[C]// Proceeding of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[7] REDMON J, DIVVALE S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[8] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[9] REDMON J, FARHADI A. YOLOV3: An incremental improvement[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:89-95.
[10]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// Proceedings of 2016 European Conference on Computer Vision. 2016:21-37.
[11]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. 2017:2999-3007.
[12]邓珍荣,白善今,马富欣,等. 改进YOLO的密集小尺度人脸检测方法[J]. 计算机工程与设计, 2020,41(3):874-879.
[13]KIM Y H, PARK W, ROH M C, et al. GroupFace: Learning latent groups and constructing group-based representations for face recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:5620-5629.
[14]牛作东,覃涛,李捍东,等. 改进Retinaface的自然场景口罩佩戴检测算法[J]. 计算机工程与应用, 2020,56(12):1-7.
[15]DENG J K, GUO J, ZHOU Y X, et al. Retinaface: Single-stage dense face localisation in the wild[J]. arXiv prepring arXiv:1905.00641, 2019.
[16]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[17]YANG S, LUO P, LOY C C, et al. Wider face: A face detection benchmark[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:5525-5533.
[18]HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobilevision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[19]DING X H, ZHANG X Y, MA N N, et al. RepVGG: Making VGG-style ConvNets great again[J]. arXiv preprint arXiv:2101.03697, 2021.
[20]GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[J]. Journal of Machine Learning Research, 2010,9:249-256.
[21]DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. 2017:764-773.
[22]GE S M, LI J, YE Q T, et al. Detecting masked faces in the wild with LLE-CNNs[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:426-434.
|