[1] |
ZHANG L, WU X L. An edge-guided image interpolation algorithm via directional filtering and data fusion[J]. IEEE Transactions on Image Processing, 2006,15(8):2226-2238.
|
[2] |
ZHANG K B, GAO X B, TAO D C, et al. Single image super-resolution with non-local means and steering kernel regression[J]. IEEE Transactions on Image Processing, 2012,21(11):4544-4556.
|
[3] |
PAN Y T, LIU D F, WANG L G, et al. A pan-sharpening method with beta-divergence non-negative matrix factorization in non-subsampled shear transform domain[J]. Remote Sensing, 2022,14(12). DOI: 10.3390/rs14122921.
|
[4] |
苏衡,周杰,张志浩. 超分辨率图像重建方法综述[J]. 自动化学报, 2013,39(8):1202-1213.
|
[5] |
苏秉华,金伟其,牛丽红,等. 超分辨率图像复原及其进展[J]. 光学技术, 2001,27(1):6-9.
|
[6] |
浦剑,张军平. 基于词典学习和稀疏表示的超分辨率方法[J]. 模式识别与人工智能, 2010,23(3):335-340.
|
[7] |
SCHULTER S, LEISTNER C, BISCHOF H. Fast and accurate image upscaling with super-resolution forest[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:3791-3799.
|
[8] |
DONG C, CHEN C E L, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]// Proceedings of the 2014 European Conference on Computer Vision. 2014:184-199.
|
[9] |
DONG C, CHEN C E L, TANG X O. Accelerating the super-resolution convolutional neural network[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:391-407.
|
[10] |
KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:1646-1654.
|
[11] |
KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:1637-1645.
|
[12] |
盘展鸿,朱鉴,迟小羽,等. 基于特征融合和注意力机制的图像超分辨率模型[J]. 计算机应用研究, 2022,39(3):884-888.
|
[13] |
LIM B, SON S, KIM H, et al. Enhanced deep residual network for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017:1132-1140.
|
[14] |
TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:2790-2798.
|
[15] |
LIU J, ZHANG W J, TANG Y T, et al. Residual feature aggregation network for image super-resolution[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:2356-2365.
|
[16] |
TAI Y, YANG J, LIU X M, et al. MemNet: A persistent memory network for image restoration[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:4549-4557.
|
[17] |
SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:1874-1883.
|
[18] |
LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:105-114.
|
[19] |
ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:2472-2481.
|
[20] |
HUI Z, GAO X B, YANG Y C, et al. Lightweight image super-resolution with information multi-distillation network[C]// Proceedings of the 27th ACM International Conference on Multimedia (MM '19). 2019:2024-2032.
|
[21] |
WANG L G, WANG Y Q, DONG X Y, et al. Unsupervised degradation representation learning for blind super-resolution[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:10576-10585.
|
[22] |
WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6450-6458.
|
[23] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:3-19.
|
[24] |
HU J, SHEN L, SUN G. Sequeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
|
[25] |
ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:294-310.
|
[26] |
DAI T, CAI J R, ZHANG Y B, et al. Second-order attention network for single image super-resolution[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:11057-11066.
|
[27] |
NIU B, WEN W L, REN W Q, et al. Single image super-resolution via a holistic attention network[C]// Proceedings of the 2020 European Conference on Computer Vision. 2020:191-207.
|
[28] |
AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: Dataset and study[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017:1122-1131.
|
[29] |
BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]// Proceedings of the 23rd British Machine Vision Conference. 2012. DOI: 10.5244/C.26.135.
|
[30] |
ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]// Proceedings of the 2010 International Conference on Curves and Surfaces. 2010:711-730.
|
[31] |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]// Proceedings of the 8th IEEE International Conference on Computer Vision. 2001,2:416-423.
|
[32] |
HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-examplars[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:5197-5206.
|
[33] |
MATSUI Y, ITO K, ARAMAKI Y, et al. Sketch-based manga retrieval using manga109 dataset[J]. Multimedia Tools and Application, 2017,76(20):21811-21838.
|
[34] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004,13(4):600-612.
|
[35] |
TIAN C W, ZHUGE R B, WU Z H, et al. Lightweight image super-resolution with enhanced CNN[J]. Knowledge-Based Systems,2020,205. DOI: 10.1016/j.knosys.2020.106235.
|
[36] |
WANG L G, DONG X Y, WANG Y Q, et al. Exploring sparsity in image super-resolution for efficient inference[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:4915-4924.
|
[37] |
ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:586-595.
|
[38] |
MITTAL A, SOUNDARARAJAN R, BOVIK A C, et al. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013,20(3):209-212.
|