[1] |
JAISWAL V, NEGI A, PAL T. A review on current advances in machine learning based diabetes prediction[J]. Primary Care Diabetes, 2021,15(3):435-443.
|
[2] |
WANG X C, ZHAI M M, REN Z P, et al. Exploratory study on classification of diabetes mellitus through a combined Random Forest Classifier[J]. BMC Medical Informatics and Decision Making, 2021,21(1):105. DOI: 10.1186/s12911-021-01471-4.
|
[3] |
GÜNDOĞDU S. Efficient prediction of early-stage diabetes using XGBoost classifier with random forest feature selection technique[J]. Multimedia Tools and Applications, 2023,82:34163-34181.
|
[4] |
LI Z J, PANG S L, QU H Y, et al. Logistic regression prediction models and key influencing factors analysis of diabetes based on algorithm design[J]. Neural Computing and Applications, 2023. DOI: 10.1007/s00521-023-08447-7.
|
[5] |
XIONG X L, ZHANG R X, BI Y, et al. Machine learning models in type 2 diabetes risk prediction: Results from a cross-sectional retrospective study in Chinese adults[J]. Current Medical Science, 2019,39(4):582-588.
|
[6] |
SAI M J, CHETTRI P, PANIGRAHI R, et al. An ensemble of light gradient boosting machine and adaptive boosting for prediction of type-2 diabetes[J]. International Journal of Computational Intelligence Systems, 2023,16. DOI: 10.1007/s44196-023-00184-y.
|
[7] |
AZAD C, BHUSHAN B, SHARMA R, et al. Prediction model using SMOTE, genetic algorithm and decision tree (PMSGD) for classification of diabetes mellitus[J]. Multimedia Systems, 2022,28(4):1289-1307.
|
[8] |
KUMAR P B M, PERUMAL R S, NADESH R K, et al. Type 2: Diabetes mellitus prediction using deep neural networks classifier[J]. International Journal of Cognitive Computing in Engineering, 2020,1:55-61.
|
[9] |
王鑫,廖彬,李敏,等. 融合LightGBM与SHAP的糖尿病预测及其特征分析方法[J]. 小型微型计算机系统, 2022,43(9):1877-1885.
|
[10] |
GLUMER C, VISTISEN D, BORCH-JOHNSEN K, et al. Risk scores for type 2 diabetes can be applied in some populations but not all[J]. Diabetes Care, 2006,29(2) 410-414.
|
[11] |
张乐,王如意,杨慧,等. 重采样技术在中老年居民糖尿病不平衡数据分类中的应用[J]. 现代预防医学, 2023,50(7):1339-1344.
|
[12] |
ZHENG X W, JIANG M L, REN X, et al. The longitudinal association of remnant cholesterol with diabetes in middle-aged and elderly Chinese: A nationwide population
|
|
-based cohort study[J]. Journal of Diabetes and its Complications, 2023,37(1):108360.
|
[13] |
CHEN X, CRIMMINS E, HU P P, et al. Venous blood-based biomarkers in the China health and retirement longitudinal study: Rationale, design, and results from the 2015 wave[J]. American Journal of Epidemiology, 2019,188(11):1871-1877.
|
[14] |
王富军,王文琦.《中国2型糖尿病防治指南(2020年版)》解读[J]. 河北医科大学学报, 2021, 42(12):1365-1371.
|
[15] |
吴辰文,梁靖涵,王伟,等. 基于递归特征消除方法的随机森林算法[J]. 统计与决策, 2017(21):60-63.
|
[16] |
任高科,莫秀良. 基于PRF-RFECV特征优选的GA-LightGBM的网络安全态势评估[J]. 计算机科学, 202350(S1):769-774.
|
[17] |
张伟,王连彪,张广帅. 基于RF-RFECV和PSO-SVM的化工过程故障诊断方法[J]. 青岛科技大学学报(自然科学版), 2022,43(5):101-108.
|
[18] |
张兵,张校梁,屈永强,等. 采用特征变量选择和长短期记忆网络的高速公路交通事件检测研究[J]. 重庆理工大学学报, 2023,37(8):157-165.
|
[19] |
KE G L, MENG Q, FINLEY T, et al.LightGBM: A highly efficient gradient boosting decision tree[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems( NIPS'17). 2017:3149-3157.
|
[20] |
QI H M, SONG X M, LIU S Z, et al. KFPredict: An ensemble learning prediction framework for diabetes based on fusion of key features[J]. Computer Methods and Programs in Biomedicine, 2023,231:107378.
|
[21] |
KUMARI S, KUMAR D, MITTAL M. An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier[J]. International Journal of Cognitive Computing in Engineering, 2021,2:40-46.
|
[22] |
ISHWARYA M S, CHERUKURI A K. Quantum-inspired ensemble approach to multi-attributed and multi-agent decision-making[J]. Applied Soft Computing, 2021,106:107283. DOI: 10.1016/j.asoc.2021.107283.
|
[23] |
SISODIA D, SISODIA D S. Prediction of diabetes using classification algorithms[J]. Procedia Computer Science, 2018,132:1578-1585.
|
[24] |
欧阳平,李小溪,冷芬,等. 机器学习算法在体检人群糖尿病风险预测中的应用[J]. 中华疾病控制杂志, 2021,25(7):849-853.
|
[25] |
LAI H, HUANG H X, KESHAVJEE K, et al. Predictive models for diabetes mellitus using machine learning techniques[J]. BMC Endocrine Disorders. 2019,19:101. DOI:10.1186/s12902-019-0436-6.
|
[26] |
WANG K, GONG M H, XIE S P, et al. Nomogram prediction for the 3-year risk of type 2 diabetes in healthy mainland China residents[J]. EPMA Journal. 2019,10(3):227-237.
|