[1] 吴庆. 基于深度学习的ADS-B欺骗式干扰检测[D]. 天津:中国民航大学, 2020.
[2] 白志刚. 基于S模式ADS-B数据解码算法研究[J]. 电子世界, 2016(6):188-189.
[3] 刘明骞,颜志文,张俊林. 空中目标辐射源的个体识别方法[J]. 系统工程与电子技术, 2019,41(11):2408-2415.
[4] 邹云开. 基于机器学习的ADS-B欺骗式干扰检测方法研究[D]. 天津:中国民航大学, 2020.
[5] 周思遥. 基于压缩感知的ADS-B信号多种干扰抑制研究[D]. 南京:南京航空航天大学, 2018.
[6] 许晓. 信号交叠下S模式ADS-B信号解码仿真[D]. 广汉:中国民用航空飞行学院, 2013.
[7] 张葛祥,胡来招,金炜东. 雷达辐射源信号脉内特征分析[J]. 红外与毫米波学报, 2004,23(6):477-480.
[8] 胡波. 脉内特征提取在信号调制形式识别中的应用[J]. 雷达与对抗, 2005(2):35-38.
[9] 张媛媛. ADS-B地面站抗欺骗系统研究[J]. 科技创新与应用, 2016(18):10-11.
[10]秦嘉. 基于深度学习的通信辐射源个体识别[D]. 北京:北京邮电大学, 2019.
[11]周江. 基于神经网络的通信信号调制识别研究及实现[D]. 成都:电子科技大学, 2018.
[12]吕国裴,谢跃雷. 基于深度学习的跳频信号识别[J]. 电讯技术, 2020,60(10):1142-1147.
[13]O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]// International Conference on Engineering Applications of Neural Networks. 2016:213-226.
[14]WEST N E, O’SHEA T. Deep architectures for modulation recognition[C]// 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (Dy SPAN). 2017. DOI: 10.1109/DySPAN.2017.7920754.
[15]ZHANG M, ZENG Y, HAN Z D, et al. Automatic modulation recognition using deep learning architectures[C]// 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). 2018. DOI: 10.1109/SPAWC.2018.8446021.
[16]WANG Y, LIU Q Y. Multi-scale permutation entropy as a tool for complexity analysis of ship-radiated noise[C]// Proceedings of the Ocean Acoustics. 2016. DOI: 10.1109/COA.2016.7535833.
[17]王望望,邓林峰,赵荣珍,等. 基于QPSO-MPE的滚动轴承故障识别方法[J]. 振动.测试与诊断, 2021,41(1):62-68.
[18]CHENS J, SHANG P J. Financial time series analysis using the relation between MPE and MWPE[J]. Physica A: Statistical Mechanics and Its Applications, 2020,537:122716.
[19]GOODFELLOW I, BENGIO Y, COURVILLE A, et al. Deep Learning[M]. MIT Press, 2016.
[20]WANG M, DENG W H. Deep visual domain adaptation: A survey[J]. Neurocomputing, 2018,312:135-153.
[21]PENG S L, JIANG H Y, WANG H X, et al. Modulation classification using convolutional neural network based deep learning model[C]// 2017 26th Wireless and Optical Communication Conference (WOCC). 2017. DOI: 10.1109/WOCC.2017.7929000.
[22]SAINATH T N, VINYALS O, SENIOR A, et al. Convolutional, long short-term memory, fully connected deep neural networks[C]// 2015 IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP). 2015:4580-4584.
[23]RIYAS S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural network for radio identification[J]. IEEE Communications Magazine, 2018,56(9):146-152.
[24]SHIN H C, ROTH H R, GAO M C, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016,35(5):1285-1298.
[25]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
|