[1] HE H B, GARCIA E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009,21(9):1263-1284.
[2] 邱少健,蔡子仪,陆璐. 基于卷积神经网络的代价敏感软件缺陷预测模型[J]. 计算机科学, 2019,46(11):156-160.
[3] 闫芮铵,张立臣. 基于Focal Loss和卷积神经网络的入侵检测[J]. 计算机与现代化, 2021(1):65-69.
[4] THOMAS C. Improving intrusion detection for imbalanced network traffic[J]. Security and Communication Networks, 2013,6(3):309-324.
[5] SALAZAR A, SAFONT G, VERGARA L. Semi-supervised learning for imbalanced classification of credit card transaction[C]// 2018 IEEE International Joint Conference on Neural Networks. 2018:4976-4982.
[6] 李艳霞,柴毅,胡友强,等. 不平衡数据分类方法综述[J]. 控制与决策, 2019,34(4):673-688.
[7] ZOU Q, XIE S F, LIN Z Y, et al. Finding the best classification threshold in imbalanced classification[J]. Big Data Research, 2016,5:2-8.
[8] 王莉,陈红梅,王生武. 新的基于代价敏感集成学习的非平衡数据集分类方法NIBoost[J]. 计算机应用, 2019,39(3):629-633.
[9] TAO X M, LI Q, GUO W J, et al. Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification[J]. Information Sciences, 2019,487:31-56.
[10]NIKULIN V, MCLACHLAN G J, NG S K. Ensemble approach for the classification of imbalanced data[C]// The 22nd Australasian Joint Conference on Artificial Intelligence. 2009:291-300.
[11]魏力,张育平. 一种改进型的不平衡数据欠采样算法[J]. 小型微型计算机系统, 2019,40(5):1094-1098.
[12]KUBAT M, MATWIN S. Addressing the curse of imbalanced training sets: One-sided selection[C]// 1997 International Conference on Machine Learning. 1997:179-186.
[13]SOWAH R A, AGEBURE M A, MILLS G A, et al. New cluster undersampling technique for class imbalance learning[J]. International Journal of Machine Learning and Computing, 2016,6(3):205-214.
[14]LIN W C, TSAI C F, HU Y H, et al. Clustering-based undersampling in class-imbalanced data[J]. Information Sciences, 2017,409-410:17-26.
[15]SONG A Y, XU Q H. Imbalanced data classification based on MBCDK-means undersampling and GA-ANN[C]// 2018 International Conference on Artificial Neural Networks. 2018:349-358.
[16]SEIFFERT C, KHOSHGOFTAAR T M, VAN HULSE J, et al. RUSBoost: A hybrid approach to alleviating class imbalance[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010,40(1):185-197.
[17]熊冰妍,王国胤,邓维斌. 基于样本权重的不平衡数据欠抽样方法[J]. 计算机研究与发展, 2016,53(11):2613-2622.
[18]王艳娥,安健,梁艳,等. 基于密度优化初始聚类中心的K-means算法[J]. 计算机技术与发展, 2020,30(12):99-105.
[19]吴浩. Adaboost分类算法研究[D]. 南京:东南大学, 2018.
[20]陈小雪,尉永清,任敏,等. 基于萤火虫优化的加权K-means算法[J]. 计算机应用研究, 2018,35(2):466-470.
[21]金旭,王磊,孙国梓,等. 一种基于质心空间的不均衡数据欠采样方法[J]. 计算机科学, 2019,46(2):50-55.
[22]石磊. 基于不平衡数据处理的电子商务垃圾评论识别研究[D]. 太原:山西财经大学, 2020.
[23]王俊红,闫家荣. 基于欠采样和代价敏感的不平衡数据分类算法[J]. 计算机应用, 2021,41(1):48-52.
[24]史明华,吴广潮. 基于聚类混合采样的不平衡数据分类[J]. 计算机与现代化, 2020(5):34-38.
|