计算机与现代化 ›› 2023, Vol. 0 ›› Issue (09): 27-31.doi: 10.3969/j.issn.1006-2475.2023.09.004

• 人工智能 • 上一篇    下一篇

基于希尔伯特相似度的云平台异常传输数据聚类方法

  

  1. (广州华商学院数据科学学院,广东 广州 511300)
  • 出版日期:2023-09-28 发布日期:2023-10-10
  • 作者简介:王宏杰(1982—),男,湖北襄阳人,讲师,硕士,研究方向:云计算,人工智能,E-mail: wanghongjie_2023@126.com; 通信作者:徐胜超(1980—),男,湖北武汉人,副教授,硕士,研究方向:并行分布式处理软件,E-mail: isdooropen@126.com。
  • 基金资助:
    国家自然科学基金面上项目(61772221); 广州华商学院校内导师制科研项目(2023HSDS06)

Clustering Method of Cloud Platform Abnormal Transmission Data Based on Hilbert Similarity

  1. (School of Data Science, Guangzhou Huashang College, Guangzhou 511300, China)
  • Online:2023-09-28 Published:2023-10-10

摘要: 云平台异常传输数据差异化很小,导致云平台异常传输数据聚类准确性较差,为此,提出一种基于希尔伯特相似度的云平台异常传输数据聚类方法。该方法采集云平台异常传输数据,将采集到的数据映射到希尔伯特空间内,同时构建希尔伯特指数,获取指数的离散概率分布。利用小波基分析云平台异常传输数据的敏感性,选取敏感度比较低的小波基对异常传输数据小波分解处理。计算希尔伯特空间内的相似度取值,划分到同一个数据集内,准确划分云平台异常传输数据,实现云平台异常传输数据聚类。实验结果表明,该方法的正确聚类数据数量为97组,异常传输数据聚类耗时仅为146 s,可以有效区分云平台中的异常传输数据。

关键词: 希尔伯特相似度, 云平台, 异常传输数据, 聚类, 数据划分, 低耗时

Abstract:  The difference of abnormal transmission data of cloud platform is very small, which leads to poor accuracy of clustering of abnormal transmission data of cloud platform. Therefore, this paper proposes a clustering method of abnormal transmission data of cloud platform based on Hilbert similarity. The proposed method collects the abnormal transmission data of the cloud platform, maps the collected data into the Hilbert space, and constructs the Hilbert index to obtain the discrete probability distribution of indexs. Wavelet basis is used to analyze the sensitivity of abnormal transmission data of cloud platform, and the wavelet basis with relatively low sensitivity is selected for wavelet decomposition of abnormal transmission data. The proposed method calculates the similarity value in Hilbert space, divides it into a same data set, accurately divides the cloud platform abnormal transmission data, and realizes the cloud platform abnormal transmission data clustering. The experimental results show that the number of correct clustering data of the proposed method is 97 groups, and the time for clustering abnormal transmission data is only 146 s, which can effectively distinguish the abnormal transmission data in the cloud platform.

Key words: Hilbert similarity, cloud platform, abnormal data transmission, clustering, data division, low consumption time

中图分类号: