[1] 唐溢. 基于深度学习的低延迟视频语义分割算法[D]. 成都:电子科技大学, 2020.
[2] 罗鹏飞. 基于自动驾驶城市场景的语义分割研究[D]. 武汉:武汉大学, 2019.
[3] 陈小波. 基于深度学习的语义分割算法研究[D]. 成都:电子科技大学, 2020.
[4] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440.
[5] NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1520-1528.
[6] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(12):2481-2495.
[7] LIN G S, MILAN A, SHEN C H, et al. RefineNet: Multi-path refinement networks for high-resolution semantic segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:5168-5177.
[8] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[9] PENG C, ZHANG X Y, YU G, et al. Large kernel matters: Improve semantic segmentation by global convolutional network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:1743-1751.
[10]ZHANG H, DANA K, SHI J P, et al. Context encoding for semantic segmentation[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7151-7160.
[11]HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.
[12]SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:4510-4520.
[13]HOWARD A, SANDLER M, CHEN B, et al. Searching for mobileNetV3[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. 2019:1314-1324.
[14]ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: An extremely efficient convolutional neural network for mobile devices[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:6848-6856.
[15]MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: Practical guidelines for efficient CNN architecture design[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:122-138.
[16]LI H C, XIONG P F, FAN H Q, et al. DFANet: Deep feature aggregation for real-time semantic segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:9514-9523.
[17]PASZKE A, CHAURASIA A, KIM S, et al. ENet: A deep neural network architecture for real-time semantic segmentation[J]. arXiv preprint arXiv:1606.02147, 2016.
[18]WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7794-7803.
[19]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[20]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:2999-3007.
[21]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848.
[22]ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6230-6239.
[23]YU C Q, WANG J B, PENG C, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:334-349.
|