[1] 张晶晶,韩军,赵亚博,等. 形状感知的绝缘子识别与缺陷诊断[J]. 中国图象图形学报, 2014,19(8):1194-1201. [2] 姜浩然,金立军,闫书佳. 航拍图像中绝缘子的识别与故障诊断[J]. 机电工程, 2015,32(2):274-278. [3] ZHAI Y J, WANG D, ZHANG M L, et al.Fault detection of insulator based on saliency and adaptive morphology[J]. Multimedia Tools and Applications, 2017,76(9):12051-12064. [4] CHENG H, ZHAI Y, CHEN R, et al.Self-shattering defect detection of glass insulators based on spatial features[J]. Energies, 2019,12(3):543-547. [5] 周莉莉,姜枫. 图像分割方法综述研究[J]. 计算机应用研究, 2017,34(7):1921-1928. [6] LI S, ZHOU H, WANG G, et al.Cracked insulator detection based on R-FCN[J]. Journal of Physics Conference Series, 2018,1069(1). DOI:10.1088/1742-6596/1069/1/012147. [7] DAI J F, LI Y, HE K M, et al.R-FCN: Object detection via region-based fully convolutional networks[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:379-387. [8] SHRIVASTAVA A, GUPTA A, GIRSHICK R.Training region-based object detectors with online hard example mining[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:761-769. [9] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[J]. arxiv preprint arxiv:1505.04597,2015. [10] 田萱,王子亚,王建新.基于语义分割的食品标签文本检测[J].农业机械学报,2020,51(08):336-343. [11] 司垒,王忠宾,熊祥祥,等. 基于改进U-net网络模型的综采工作面煤岩识别方法[J]. 煤炭学报, 2021,46(S1):578-589. [12] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:3431-3440. [13] ZHANG J, LIN S, DING L, et al.Multi-scale context aggregation for semantic segmentation of remote sensing images[J]. Remote Sensing, 2020,12(4):701. [14] ASGARI T S, ABHISHEK K, COHEN J P, et al.Deep semantic segmentation of natural and medical images: A review[J]. Artificial Intelligence Review, 2021,54(1):137-178. [15] CANNY J.A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986(6):679-698. [16] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149. [17] LIU W, ANGUELOV D, ERHAN D, et al.SSD: Single shot multiBox detector[C]// Computer Vision - ECCV 2016. 2016:21-37. [18] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788. [19] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:2999-3007. [20] HAN J M, YANG Z, ZHANG Q Y, et al.A method of insulator faults detection in aerial images for high-voltage transmission lines inspection[J]. Applied Sciences, 2019,9(10):2009. [21] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778. [22] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:936-944. [23] MACQUEEN J.Some methods for classification and analysis of multivariate observations[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967,1(14):281-297. [24] OTSU N.A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1):62-66. [25] 张莉,贾永红,程刚. 基于数学形态学的遥感影像边缘检测研究[J]. 地理空间信息, 2006(4):52-54. [26] REDMON J, FARHADI A.YOLO9000: Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:6517-6525. [27] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018. |