[1] |
BOULCH A, LE SAUX B, AUDEBERT N. Unstructured point cloud semantic labeling using deep segmentation networks[C]// Proceedings of the Workshop on 3D Object Retrieval. 2017:17-24.
|
[2] |
LAWIN F J, DANELLJAN M, TOSTEBERG P, et al. Deep projective 3D semantic segmentation[C]// Proceedings of 17th International Conference on Computer Analysis of Images and Patterns. 2017:95-107.
|
[3] |
KIM M, ILYAS N, KIM K. AMSASeg: An attention-based multi-scale atrous convolutional neural network for real-time object segmentation from 3D point cloud[J]. IEEE Access, 2021,9:70789-70796.
|
[4] |
CHENG R, RAZANI R, TAGHAVI E, et al. (AF)2-S3Net: Attentive feature fusion with adaptive feature selection for sparse semantic segmentation network[C]. // Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:12542-12551.
|
[5] |
ZHU X G, ZHOU H, WANG T, et al. Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation[C]// Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:9934-9943.
|
[6] |
杨晓文,李静,韩燮,等. 基于八叉树的卷积神经网络三维模型分割[J]. 计算机工程与设计, 2020,41(9):2663-2669.
|
[7] |
QI C R, SU H, KAICHUN M, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:77-85.
|
[8] |
QI C R, YI L, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st Annual Conference on Neural Information Processing Systems. 2017:5105-5114.
|
[9] |
THOMAS H, QI C R, DESCHAUD J E, et al. KPconv: Flexible and deformable convolution for point clouds[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. 2019:6410-6419.
|
[10] |
MA X, QIN C, YOU H X, et al. Rethinking network design and local geometry in point cloud: A simple residual MLP framework[J]. arXiv preprint arXiv:2202.07123, 2022.
|
[11] |
XU J Y, ZHANG R X, DOU J, et al. RPVNet: A deep and efficient range-point-voxel fusion network for LiDAR point cloud segmentation[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. 2021:16004-16013.
|
[12] |
ZHOU H, ZHU X G, SONG X, et al. Cylinder3D: An effective 3D framework for driving-scene lidar semantic segmentation [J]. arXiv preprint arXiv:2008.01550, 2020.
|
[13] |
LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:4558-4567.
|
[14] |
HU Q Y, YANG B, XIE L H, et al. RandlA-Net: Efficient semantic segmentation of large-scale point clouds[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:11105-11114.
|
[15] |
SHUAI H, XU X, LIU Q S. Backward attentive fusing network with local aggregation classifier for 3D point cloud semantic segmentation[J]. IEEE Transactions on Image Processing, 2021,30:4973-4984.
|
[16] |
苏鸣方,胡立坤,黄润辉. 基于上下文注意力的室外点云语义分割方法[J]. 计算机工程, 2023,49(3):248-256.
|
[17] |
CHEN M D, HU Q Y, YU Z F, et al. STPLS3D: A large-scale synthetic and real aerial photogrammetry 3D point cloud dataset[J]. arXiv preprint arXiv:2203.09065, 2022.
|
[18] |
WU B C, ZHOU X Y, ZHAO S C, et al. SqueezeSegV2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[C]// 2019 International Conference on Robotics and Automation. 2019:4376-4382.
|
[19] |
XIAO A R, HUANG J X, GUAN D Y, et al. Transfer learning from synthetic to real LiDAR point cloud for semantic segmentation[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2022,36(3):2795-2803.
|
[20] |
HOFFMAN J, WANG D Q, YU F S, et al. FCNs in the wild: Pixel-level adversarial and constraint-based adaptation[J]. arXiv preprint arXiv:1612.02649, 2016.
|
[21] |
WU B C, WAN A L, YUE X Y, et al. SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]// 2018 IEEE International Conference on Robotics and Automation. 2018:1887-1893.
|
[22] |
ZHAO S C, WANG Y Z, LI B, et al. ePointDA: An end-to-end simulation-to-real domain adaptation framework for LiDAR point cloud segmentation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(4):3500-3509.
|
[23] |
HU Q Y, YANG B, KHALID S, et al. Towards semantic segmentation of urban-scale 3D point clouds: A dataset, benchmarks and challenges [C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:4975-4985.
|
[24] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015:234-241.
|
[25] |
LI Y Y, BU R, SUN M C, et al. PointCNN: Convolution on X-transformed points[C]// Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018:828-838.
|
[26] |
SUN B C, SAENKO K. Deep coral: Correlation alignment for deep domain adaptation[C]// European Conference on Computer Vision. 2016:443-450.
|
[27] |
HACKEL T, SAVINOV N, LADICKY L, et al. Semantic3D.net: A new large-scale point cloud classification benchmark[J]. arXiv preprint arXiv:1704.03847, 2017.
|
[28] |
BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: A dataset for semantic scene understanding of lidar sequences[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. 2019:9296-9306.
|