计算机与现代化 ›› 2024, Vol. 0 ›› Issue (01): 74-79.doi: 10.3969/j.issn.1006-2475.2024.01.012

• 人工智能 • 上一篇    下一篇

基于无监督域适应的室外点云语义分割

  

  1. (1.福州大学电气工程与自动化学院,福建 福州350108; 2.中国科学院海西研究院泉州装备制造研究中心,福建 泉州362200)
  • 出版日期:2024-01-23 发布日期:2024-02-26
  • 作者简介:胡崇佳(1997—),男,江西泰和人,硕士研究生,研究方向:计算机视觉,E-mail: 549809494@qq.com; 刘金洲(1996—),男,山东掖县人,工程师,硕士,E-mail: 2623249317@qq.com; 通信作者方立(1986—),男,湖北沙洋人,研究员,硕士生导师,博士,研究方向:空间数据智能处理,E-mail: fangli@fjirsm.ac.cn。
  • 基金资助:
    泉州市科技计划项目(2020C003R); 国家自然科学基金青年科学基金资助项目(42101359)

Unsupervised Domain Adaptation for Outdoor Point Cloud Semantic Segmentation

  1. (1. School of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China;
    2. Quanzhou Institure of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Quanzhou 362200, China)
  • Online:2024-01-23 Published:2024-02-26

摘要: 摘要:为处理室外大规模场景中语义分割网络训练需求数据量过大的问题,提出一种基于无监督域自适应的点云语义分割方法。该方法使用改进的RandLA-Net以SPTLS3D真实世界数据集的少量点云作为目标对象进行语义分割。模型在SensatUrban数据集上完成分割网络的预训练,通过缩小源域和目标域之间的域差距来完成模型的迁移。RandLA-Net编码过程会缺失原始点云全局特征,因此本文提出一种额外获取全局信息加入网络解码的方法。此外,为增强差异化信息的获取,RandLA-Net的局部注意力模块权值改为根据各点的特征和其邻域的平均特征的差值。实验显示,该网络在SemanticKITTI数据集上的平均交并比精度达到54.3%,在Semantic3D上的平均交并比精度达到了71.91%。预训练好的模型经过微调后平均交并比精度达到了80.05%,比直接训练的效果好8.83个百分点。

关键词: 关键词:点云语义分割, 无监督领域自适应, 迁移学习, 微调, 深度学习

Abstract:

Abstract: An unsupervised domain adaptation for LiDAR semantic segmentation method is proposed to deal with the problem of excessive data required for semantic segmentation network training in outdoor large-scale scenes. The method uses a modified RandLA-Net for semantic segmentation using a small number of point clouds from the SPTLS3D’s real world data as target objects. The model finishes the pre-training of the segmentation network on SensatUrban, and completes the transfer task by minimizing the domain gap between the source and target domains. The RandLA-Net losses the global features of the original point cloud in the encoding process, so an additional method of obtaining global information to join the network decoding is proposed. In addition, for getting the differentiated information, the weights of the local attention module of RandLA-Net is changed to use the difference between the features of each point and the average features of its neighbors. The experiments show that the mean intersection over union  of the network are 54.3% on SemanticKITTI and 71.91% on Semantic3D. The mIoU of the pre-trained network after fine-tuning are 80.05%, which is 8.83  percentage points better than training directly.

Key words: Key words: point cloud semantic segmentation, unsupervised domain adaptation, transfer learning, fine-tune, deep learning

中图分类号: