[1] 张继东,郑宝玉. 基于导频的OFDM信道估计及其研究进展[J]. 通信学报, 2003,24(11):116-124.
[2] 邹时禧,满欣,陈海洋,等. OFDM混沌噪声多目标通信干扰效果分析[J]. 微电子学与计算机, 2017,34(3):5-9.
[3] 李子,蔡跃明,徐友云. OFDM系统中盲、半盲以及非盲信道估计方法的Cramér-Rao界[J]. 通信学报, 2005,26(7):27-32.
[4] 赵旺兴,万群,陈章鑫. 基于OFDM循环前缀LS信道估计的构造方法[J]. 通信学报, 2013,34(3):175-182.
[5] 徐以涛,王呈贵. OFDM系统基于自适应定阶的MMSE信道估计[J]. 电子与信息学报, 2007,29(1):117-120.
[6] 高群毅,肖立民,周世东,等. OFDM系统中一种信道估计频域插值算法[J]. 清华大学学报(自然科学版), 2006,46(10):1715-1718.
[7] 邝育军,乐光新. OFDM系统信道估计中插值算法性能分析[J]. 北京邮电大学学报, 2003,26(1):41-45.
[8] CHEN W D. The ill-posedness of derivative interpolation and regularized derivative interpolation for band-limited functions by sampling[J]. EURASIP Journal on Advances in Signal Processing, 2020,2020: Article No.32. DOI: 10.1186/s13634-020-00668-5.
[9] SOLTANI M, POURAHMADI V, SHEIKHZADEH H. Pilot pattern design for deep learning-based channel estimation in OFDM systems[J]. IEEE Wireless Communication Letters, 2020,9(12):2173-2176.〖HJ1.6mm〗
[10]YE H, LI G Y, JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems[J]. IEEE Wireless Communication Letters, 2018,7(1):114-117.
[11]GAO X X, JIN S, WEN C K, et al. ComNet: Combination of deep learning and expert knowledge in OFDM receivers[J]. IEEE Communications Letters, 2018,22(12):2627-2630.
[12]WEN C K, SHIH W T, JIN S. Deep learning for massive MIMO CSI feedback[J]. IEEE Wireless Communications Letters, 2018,7(5):748-751.
[13]YANG J, WEN C K, JIN S, et al. Beamspace channel estimation in mmWave systems via cosparse image reconstruction technique[J]. IEEE Transactions on Communications, 2018,66(10):4767-4782.
[14]HE H T, WEN C K, JIN S, et al. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems[J]. IEEE Wireless Communication Letters, 2018,7(5):852-855.
[15]ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017,26(7):3142-3155.
[16]METZLER C A, MOUSAVI A, BARANIUK R G. Learned D-AMP: A principled CNN-based compressive image recovery algorithm[J]. arXiv preprint arXiv:1704.06625, 2017.
[17]LI X F, ALKHATEEB A, TEPEDELENLIOGLU C. Generative adversarial estimation of channel covariance in vehicular millimeter wave systems[C]// Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers. 2018:1572-1576.
[18]MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
[19]SOLTANI M, POURAHMADI V, MIRZAEI A, et al. Deep learning-based channel estimation[J]. IEEE Communications Letters, 2019,23(4):652-655.
[20]DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(2):295-307.
[21]LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:105-114.
[22]ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein GAN[J]. arXiv preprint arXiv:1701.07875, 2017.
[23]SHI W Z, CABALLERO J, HUSZAR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:1874-1883.
|