[1] SAITO K, KIMURA M, OHARA K, et al. Super mediator: A new centrality measure of node importance for information diffusion over social network[J]. Information Sciences, 2016,329:985-1000.
[2] China Internet Network Information Center. The 45th China Statistical Report on Internet Development[R]. Beijing: China Internet Network Information Center, 2020.
[3] 苑宁萍,辛力坚,王呼生,等. 融合用户兴趣度和信任度的协同过滤推荐算法[J]. 计算机工程与设计, 2020,41(7):1967-1974.
[4] 姚彬修,倪建成,于苹苹,等. 基于多源信息相似度的微博用户推荐算法[J]. 计算机应用, 2017,37(5):1382-1386.
[5] 黄贤英,阳安志,刘小洋,等. 融合兴趣的微博用户相似度计算研究[J]. 计算机应用研究, 2020,37(1):66-70.
[6] LIU H F, HU Z, MIAN A, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge-Based Systems, 2014,56:156-166.
[7] YU Z W, WONG R K, CHI C H. Efficient role mining for context-aware service recommendation using a high-performance cluster[J]. IEEE Transactions on Services Computing, 2017,10(6):914-926.
[8] 田保军,胡培培,杜晓娟,等. Hadoop下基于聚类协同过滤推荐算法优化的研究[J]. 计算机工程与科学, 2016,38(8):1615-1624.
[9] ZHANG T W, LI W P, WANG L, et al. Social recommendation algorithm based on stochastic gradient matrix decomposition in social network[J]. Journal of Ambient Intelligence and Humanized Computing, 2020,11(2):601-608.
[10]付永平,邱玉辉. 一种基于贝叶斯网络的个性化协同过滤推荐方法研究[J]. 计算机科学, 2016,43(9):266-268.
[11]杨尊琦,张倩楠. 基于k-means算法的微博用户推荐功能研究[J]. 情报杂志, 2013,32(8):142-144.
[12]KATARYA R, VERMA O P. A collaborative recommender system enhanced with particle swarm optimization technique[J]. Multimedia Tools and Applications, 2016,75(15):9225-9239.
[13]王永贵,刘凯奇. 一种优化聚类的协同过滤推荐算法[J]. 计算机工程与应用, 2020,56(15):66-73.
[14]杨兴雨,李华平,张宇波. 基于聚类和随机森林的协同过滤推荐算法[J]. 计算机工程与应用, 2018,54(16):152-157.
[15]范奥哲,何利力. 一种双向聚类协同过滤推荐算法研究[J]. 软件导刊, 2020,19(5):78-82.
[16]NAJAFABADI M K, MAHRIN M N, CHUPRAT S, et al. Improving the accuracy of collaborative filtering recommendations using clustering and association rules mining on implicit data[J]. Computers in Human Behavior, 2017,67:113-128.
[17]KOOHI H, KIANI K. User based collaborative filtering using fuzzy C-means[J]. Measurement, 2016,91:134-139.
[18]ARTHUR D, VASSILVITSKII S. K-means++: The advantages of careful seeding[C]// Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. 2007:1027-1035.
[19]MADAN S, DANA K J. Modified balanced iterative reducing and clustering using hierarchies (m-BIRCH) for visual clustering[J]. Pattern Analysis & Applications, 2016,19(4):1023-1040.
[20]ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. 1996:226-231.
[21]ZHU J, ZOU H, ROSSETS S, et a1. Multi-class AdaBoost[J]. Statistics and Its Interface, 2009,2(3):349-360.
|