[1] 武文雅,陈钰枫,徐金安,等. 中文实体关系抽取研究综述[J]. 计算机与现代化, 2018(8):21-27.
[2] 黄埔. 文本信息抽取优化关键技术研究与系统实现[D]. 北京:北京邮电大学, 2019.
[3] 付瑞吉. 开放域命名实体识别及其层次化类别获取[D]. 哈尔滨:哈尔滨工业大学, 2014.
[4] CHEN H H, DING Y W, TSAI S C, et al. Description of the NTU system used for MET2[C]// Proceedings of the 7th Message Understanding Conference. 1998.
[5] BLACK W J, RINALDI F, MOWATT D. FACILE: Description of the NE system used for MUC-7[C]// Proceedings of the 7th Message Understanding Conference. 1998.
[6] 伍玉凯. 基于规则匹配的语义处理系统研究与实现[D]. 哈尔滨:哈尔滨工业大学, 2018.
[7] 刘一佳,车万翔,刘挺,等. 基于序列标注的中文分词、词性标注模型比较分析[J]. 中文信息学报, 2013,27(4):30-36.
[8] 殷章志. 中文命名实体识别研究[D]. 大连:大连理工大学, 2019.
[9] 冯静,李正武,张登云,等. 基于隐马尔可夫模型的桥梁检测文本命名实体识别[J]. 交通世界(工程技术), 2020(3):32-33.
[10]ABD M T, MOHD M. A comparative study of word representation methods with conditional random fields and maximum entropy markov for bio-named entity recognition[J]. Malaysian Journal of Computer Science, 2018,31(5):15-30.
[11]PATIL N, PATIL A, PAWAR B V. Named entity recognition using conditional random fields[J]. Procedia Computer Science,2020,167:1181-1188.
[12]曹波,苏一丹,邓琦. 基于最大熵模型的中国人名自动识别[J]. 计算机工程与应用, 2009,45(4):227-228.
[13]BORTHWICK A. A Maximum Entropy Approach To Named Entity Recognition[M]. NewYork: New York University, 1999.
[14]COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011(12):2493-2537.
[15]万磊,佟鑫,盛明伟,等. Softmax分类器深度学习图像分类方法应用综述[J]. 导航与控制, 2019,18(6):1-9.
[16]LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016:260-270.
[17]LEE C. LSTM-CRF models for named entity recognition[J]. IEICE Transactions on Information and Systems, 2017(4):882-887.
[18]禤镇宇,蒋盛益,张礼明,等. 基于多特征Bi-LSTM-CRF的影评人名识别研究[J]. 中文信息学报, 2019,33(3):94-101.
[19]张磊. 特定领域的命名实体识别方法的研究[J]. 计算机与现代化, 2018(3):60-64.
[20]SETTLES B. Active learning literature survey[J]. Machine Learning, 2010,15(2):201-221.
[21]SHEN Y Y, YUN H, LIPTON Z C, et al. Deep active learning for named entity recognition[C]// Proceedings of the 2nd Workshop on Representation Learning for NLP. 2017.
[22]毛明毅,吴晨,钟义信,等. 加入自注意力机制的BERT命名实体识别模型[J]. 智能系统学报, 2020,15(4):146-153.
[23]THIREOU T, RECZKO M. Bidirectional long short-term memory networks for predicting the subcellular localization of eukaryotic proteins[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007,4(3):441-446.
[24]MIKOLOV T, CHEN K, CORRADO G S, et al. Efficient estimation of word representations in vector space[J]. arXiv preprint arXiv:1301.3781, 2013.
|