计算机与现代化 ›› 2024, Vol. 0 ›› Issue (03): 34-40.doi: 10.3969/j.issn.1006-2475.2024.03.006
摘要:
摘要:现有的推荐系统研究大多集中在如何提高推荐的精度上,而忽略了推荐的可解释性。为了最大程度地提高用户对推荐项的满意度,提出一种基于知识图谱的多目标可解释性推荐模型,同时优化推荐的准确性、新颖性、多样性和可解释性。首先通过知识图谱得到用户可解释的候选列表,并利用统一的方法以目标用户的交互项和推荐项之间的路径作为解释依据对推荐的可解释性进行量化,最后通过多目标优化算法对可解释的候选列表进行优化,得到最终的推荐列表。在Movielens和Epinions数据集上的实验结果表明,本文所提出的模型可以在不降低准确性、新颖性和多样性的情况下提高推荐的可解释能力。
中图分类号: