[1] RODRIGUES M W, BRANDAO W C, ZARATE L E. Recommending scientific collaboration from ResearchGate[C]// 2018 7th Brazilian Conference on Intelligent Systems. 2018:336-341.
[2] XIA F, CHEN Z, WANG W, et al. MVCWalker: Random walk-based most valuable collaborators recommendation exploiting academic factors[J]. IEEE Transactions on Emerging Topics in Computing, 2014,2(3):364-375.
[3] MOREIRA C, CALADO P, MARTINS B. Learning to rank academic experts in the dblp dataset[J]. Expert Systems, 2015,32(4):477-493.
[4] KONG X J, JIANG H Z, YANG Z, et al. Exploiting publication contents and collaboration networks for collaborator recommendation[J]. PLoS One, 2016,11(2):1-13.
[5] SURIAN D, LIU N, LO D, et al. Recommending people in developers collaboration network[C]// Working Conference on Reverse Engineering. 2011:379-388.
[6] LAPPAS T, LIU K, TERZI E. Finding a team of experts in social networks[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2009:467-476.
[7] CANFORA G, PENTA M D, OLIVETO R, et al. Who is going to mentor newcomers in open source projects?[C]// Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering. 2012:1-11.
[8] DU G Y, LIU Y C, YU J J. Scientific users interest detection and collaborators recommendation[C]// International Conference on Big Data. 2018:72-79.
[9] THELWALL M, KOUSHA K.ResearchGate: Disseminating, communicating, and measuring scholarship?[J]. Journal of the Association for Information Science and Technology, 2015,66(5):876-889.
[10] DAFONTEGOMEZ A, MIGUEZGONZALEZ M I, PUENTESRIVERA I. Academic social networks: Presence and activity in Academia.edu and ResearchGate of communication researchers of the Galician universities[C]// Iberian Conference on Information Systems and Technologies. 2015:1-6.
[11] MUSCANELL N, UTZ S. Social networking for scientists: An analysis on how and why academics use ResearchGate[J]. Online Information Review, 2017,41(5):744-759.
[12] DENG S L, TONG J J, LIN Y Q, et al. Motivating scholars responses in academic social networking sites: An empirical study on ResearchGate Q&A behavior[J]. Information Processing & Management, 2019,56(6):1-13.
[13] LI L, HE D Q, JENG W, et al. Answer quality characteristics and prediction on an academic Q&A site: A case study on ResearchGate[C]// Proceedings of the 24th International Conference on World Wide Web. 2015:1453-1458.
[14] 曾庆旺. 基于ResearchGate的科研合作者推荐研究与实现[D]. 北京:北京交通大学, 2018.
[15] LE Q, MIKOLOV T. Distributed representations of sentences and documents[C]// International Conference on Machine Learning. 2014:1188-1196.
[16] MIKOLOV T, SUTSKEVER I, CHEN KAI, et al. Distributed representations of words and phrases and their compositionality[C]// Advances in Neural Information Processing Systems. 2013:3111-3119.
[17] 苏东出. 基于TF-IDF和余弦相似度的图书馆OPAC系统的研究和实现[J]. 内蒙古科技与经济, 2019(21):67-69.
[18] TONG H G, FALOUTSOS C, PAN J Y. Fast random walk with restart and its applications[C]// International Conference on Data Mining. 2006:613-622.
[19] LATAPY M, PONS P. Computing communities in large networks using random walks[J]. Journal of Graph Algorithms and Applications, 2006,10(2):191-218.
[20] 项亮. 推荐系统实践[M]. 北京:人民邮电出版社, 2012.
[21] ZHANG P C, JIA Y Y, GAO J, et al. Short-term rainfall forecasting using multi-layer perceptron[J]. IEEE Transactions on Big Data, 2020,6(1):93-106.
[22] RUCK D W, ROGERS S K, KABRISKY M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Computing, 1990,2(2):40-48.
[23] ZHANG S A, YAO L, SUN A X, et al. Deep learning based recommender system: A survey and new perspectives[J]. ACM Computing Surveys, 2018,1(1):1-35.
[24] 张鹏程,贾旸旸. 一种基于多层感知器的动态区域联合短时降水预报方法[J]. 计算机应用与软件, 2018,35(11):159-164.
[25] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016.
[26] LAU J H, BALDWIN T. An empirical evaluation of Doc2Vec with practical insights into document embedding generation[J].Computation and Language, 2016:arXiv:1607.05368.
[27] LIAW A, WIENER M. Classification and regression with random forest[J]. R News, 2002,23(23):18-22.
[28] LEE S L. Commodity recommendations of retail business based ondecisiontree induction[J]. Expert Systems with Applications, 2010,37(5):3685-3694.
[29] YU H, XIE T T, PASZCZYNSKI S, et al. Advantages of radial basis function networks for dynamic system design[J]. IEEE Transactions on Industrial Electronics, 2011,58(12):5438-5450.
[30] ZHAO C Y, ZHANG H X, ZHANG X Y, et al. Application of support vector machine (SVM) for prediction toxic activity of different data sets[J]. Toxicology, 2006,217(2-3):105-119.
|