[1] |
SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. 2001:285-295.
|
[2] |
TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. 2018:565-573.
|
[3] |
YUAN F J, KARATZOGLOU A, ARAPAKIS I, et al. A simple convolutional generative network for next item recommendation[C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. 2019:582-590.
|
[4] |
肖妍,霍林. 基于复合卷积和自注意力的会话推荐[J/OL]. 计算机工程与应用:1-13(2022-05-25)[2022-10-22]. http://kns.cnki.net/kcms/detail/11.2127.tp.20220523.
|
|
1706.022.html.
|
[5] |
LIU Q, ZENG Y F, MOKHOSI R, et al. STAMP: Short-term attention/memory priority model for session-based recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2018:1831-1839.
|
[6] |
JIANG J Y, ZHANG P Y, LUO Y T, et al. AdaMCT: Adaptive mixture of CNN-Transformer for sequential recommendation[J]. arXiv preprint arXiv:2205.08776, 2022.
|
[7] |
RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. 2010:811-820.
|
[8] |
HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[J]. arXiv preprint arXiv:1511.06939, 2015.
|
[9] |
LI J, REN P J, CHEN Z M, et al. Neural attentive session-based recommendation[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. 2017:1419-1428.
|
[10] |
YUAN W H, WANG H, YU X M, et al. Attention-based context-aware sequential recommendation model[J]. Information Sciences, 2020,510:122-134.
|
[11] |
王燕,范林,赵妮妮. 利用门控网络构建用户动态兴趣的序列推荐模型[J]. 计算机工程, 2022,48(8):283-291.
|
[12] |
YAN A, CHENG S, KANG W C, et al. CosRec: 2D convolutional neural networks for sequential recommendation[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019:2173-2176.
|
[13] |
ZHANG Q, WU B, SUN Z C, et al. Gating augmented capsule network for sequential recommendation[J]. Knowledge-based Systems, 2022,247. DOI: 10.1016/j.knosys.2022.108817.
|
[14] |
KANG W C, MCAULEY J. Self-attentive sequential recommendation[C]// Proceedings of the 2018 IEEE International Conference on Data Mining. 2018:197-206.
|
[15] |
杜永萍,牛晋宇,王陆霖,等. 基于时间卷积注意力神经网络的序列推荐模型[J]. 模式识别与人工智能, 2022,35(5):472-480.
|
[16] |
SUN F, LIU J, WU J, et al. BERT4Rec: Sequential recommendation with bidirectional encoder representations from Transformer[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019:1441-1450.
|
[17] |
WU L W, LI S Q, HSIEH C J, et al. SSE-PT: Sequential recommendation via personalized Transformer[C]// Proceedings of the 14th ACM Conference on Recommender Systems. 2020:328-337.
|
[18] |
RASHED A, ELSAYED S, SCHMIDT-THIEME L. Context and attribute-aware sequential recommendation via cross-attention[C]// Proceedings of the 16th ACM Conference on Recommender Systems. 2022:71-80.
|
[19] |
HU B B, SHI C, ZHAO W X, et al. Local and global information fusion for top-N recommendation in heterogeneous information network[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018:1683-1686.
|
[20] |
SONG J, WANG Y Y, TANG S L, et al. Local-global memory neural network for medication prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021,32(4):1723-1736.
|
[21] |
ZHANG S, TAY Y, YAO L N, et al. Next item recommendation with self-attentive metric learning[DB/OL]. [2022-10-22]. https://recnlp2019.github.io/papers/RecNLP2019_paper_21.pdf.
|
[22] |
ZHANG L X, WANG P S, LI J C, et al. Attentive hybrid recurrent neural networks for sequential recommendation[J]. Neural Computing and Applications, 2021,33(17):11091-11105.
|
[23] |
WANG F, FENG W S. Multi-interest sequence recommendation algorithm based on BERT[C]// Proceedings of the 4th International Conference on Computer Science and Software Engineering. 2021:13-17.
|
[24] |
DU Y P, PENG Z, NIU J Y, et al. A unified hierarchical attention framework for sequential recommendation by fusing long and short-term preferences[J]. Expert Systems with Applications, 2022,201. DOI: 10.1016/j.eswa.2022.117102.
|
[25] |
LIN J, PAN W K, MING Z. FISSA: Fusing item similarity models with self-attention networks for sequential recommendation[C]// Proceedings of the 14th ACM Conference on Recommender Systems. 2020:130-139.
|
[26] |
JIANG Z H, YU W H, ZHOU D Q, et al. ConvBERT: Improving BERT with span-based dynamic convolution[C]// Proceedings of the 2020 IEEE International Conference on Neural Information Processing Systems. 2020:12837-12848.
|
[27] |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. 2009:452-461.
|
[28] |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. 2017:173-182.
|