[1] |
LI M M, WANG L C. A survey on personalized news recommendation technology[J]. IEEE Access, 2019,7:145861
|
|
-145879.
|
[2] |
FRENCH R M. Catastrophic forgetting in connectionist networks[J]. Trends in Cognitive Sciences, 1999,3(4):128-135.
|
[3] |
DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019:4171-4186.
|
[4] |
WU C H, WU F Z, QI T, et al. Empowering news recommendation with pre-trained language models[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021:1652-1656.
|
[5] |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]// Proceedings of the 37th International Conference on Machine Learning. 2020:1597-1607.
|
[6] |
HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015.
|
[7] |
WU F Z, QIAO Y, CHEN J H, et al. MIND: A large-scale dataset for news recommendation[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020:3597-3606.
|
[8] |
SON J W, KIM A Y, PARK S B. A location-based news article recommendation with explicit localized semantic analysis[C]// Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2013:293-302.
|
[9] |
ZHU Q N, ZHOU X F, SONG Z L, et al. DAN: Deep attention neural network for news recommendation[C]// Proceedings of the 2019 AAAI Conference on Artificial Intelligence. 2019,33(1):5973-5980.
|
[10] |
WU C H, WU F Z, AN M X, et al. NPA: Neural news recommendation with personalized attention[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019:2576-2584.
|
[11] |
ZHANG H J, SHEN Z D. News recommendation based on user topic and entity preferences in historical behavior[J]. Information, 2023,14(2). DOI: 10.3390/info14020060.
|
[12] |
VAN De VEN G M, TOLIAS A S. Three scenarios for continual learning[J]. arXiv preprint arXiv:1904.07734, 2019.
|
[13] |
LI Z Z, HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(12):2935-2947.
|
[14] |
KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al. Overcoming catastrophic forgetting in neural networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(13):3521-3526.
|
[15] |
ZENKE F, POOLE B, GANGULI S. Continual learning through synaptic intelligence[C]// Proceedings of the 34th International Conference on Machine Learning. 2017:3987-3995.
|
[16] |
CHAUDHRY A, DOKANIA P K, AJANTHAN T, et al. Riemannian walk for incremental learning: Understanding forgetting and intransigence[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:532-547.
|
[17] |
REBUFFI S A, KOLESNIKOV A, SPERL G, et al. iCaRL: Incremental classifier and representation learning[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:5533-5542.
|
[18] |
RIEMER M, CASES I, AJEMIAN R, et al. Learning to learn without forgetting by maximizing transfer and minimizing interference[J]. arXiv preprint arXiv:1810.11910, 2018.
|
[19] |
BUZZEGA P, BOSCHINI M, PORRELLO A, et al. Dark experience for general continual learning: A strong, simple baseline[C]// Proceedings of the 2020 International Conference on Neural Information Processing Systems. 2020:15920-15930.
|
[20] |
ERICSSON L, GOUK H, LOY C C, et al. Self-supervised representation learning: Introduction, advances, and challenges[J]. IEEE Signal Processing Magazine, 2022,39(3):42-62.
|
[21] |
HE K M, FAN H Q, WU Y X, et al. Momentum contrast for unsupervised visual representation learning[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:9726-9735.
|
[22] |
GRILL J B, STRUB F, ALTCHE F, et al. Bootstrap your own latent: A new approach to self-supervised learning[C]// Proceedings of the 2020 International Conference on Neural Information Processing Systems. 2020:21271-21284.
|
[23] |
CHEN X L, HE K M. Exploring simple Siamese representation learning[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021:15745-15753.
|
[24] |
WU C H, WU F Z, QI T, et al. Is news recommendation a sequential recommendation task[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022:2382-2386.
|
[25] |
BARDES A, PONCE J, LECUN Y. VICReg: Variance-invariance-covariance regularization for self-supervised learning[J]. arXiv preprint arXiv:2105.04906, 2021.
|
[26] |
ZBONTAR J, JING L, MISRA I, et al. Barlow twins: Self-supervised learning via redundancy reduction[C]// Proceedings of the 38th International Conference on Machine Learning. 2021:12310-12320.
|