[1] 杨东燕. 基于单片机的产品自动计数与装箱控制系统[J]. 内蒙古科技与经济, 2010(20):76.
[2] 图尔克(天津)传感器有限公司. TURCK光电传感器在自动化生产线上的应用——啤酒/饮料自动化生产线上透明瓶子检测计数[J]. 国内外机电一体化技术, 2006(5):86.
[3] MERLIN P M, FARBER D J. A parallel mechanism for detecting curves in pictures[J]. IEEE Transactions on Computers, 1975,24(1):96-98.
[4] 〖KG-*4〗LEE D S. Effective Gaussian mixture learning for video background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(5):827-832.
[5] 夏天煜,汤晓华,李可,等. 在线智能视觉检测系统在小包装食盐装箱中的应用[J]. 北京工商大学学报(自然科学版), 2011,29(5):61-64.
[6] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
[7] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2005:886-893.
[8] 王彩云. 目标检测的研究进展[C]// 中国计算机用户协会网络应用分会2019年第二十三届网络新技术与应用年会论文集. 2019:48-51.
[9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:580-587.
[10]GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[11]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems. MIT Press, 2015:91-99.
[12]王静涛,宋文龙,李克新,等. 依据Faster R-CNN的活体植株叶片气孔检测方法[J/OL]. 东北林业大学学报, 2020,48(2):34-39[2020-02-19].https://doi.org/10.13759/j.cnki.dlxb.2020.02.007.
[13]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]∥ Proceedings of the 14th European Conference on Computer Vision. Springer Verlag, 2016:21-37.
[14]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[15]刘小刚,范诚,李加念,等. 基于卷积神经网络的草莓识别方法[J/OL]. 农业机械学报:1-13[2020-02-19]. http://kns.cnki.net/kcms/detail/11.1964.S. 20191211.1308.004.html.
[16]董伟,钱蓉,张洁,等. 基于深度学习的蔬菜鳞翅目害虫自动识别与检测计数[J]. 中国农业科技导报, 2019,21(12):76-84.
[17]郑秋梅,王璐璐,王风华. 基于改进卷积神经网络的交通场景小目标检测[J/OL]. 计算机工程:1-9[2020-04-20]. https://doi.org/10.19678/j.issn.1000-3428.0056462.
[18]李佐龙,王帮海,卢增. 多尺度特征融合重建的行人检测方法[J/OL]. 计算机工程与应用:1-10[2020-04-20]. http://kns.cnki.net/kcms/detail/11.2127.TP.20200323.2226.014.html.
[19]马美荣,李东喜. 基于RetinaNet的手机主板缺陷检测研究[J]. 计算机工程与科学, 2020,42(4):673-682.
[20]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:2999-3007.
[21]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778.
[22]栾浩,王力,姜敏,等. 基于改进SSD的目标检测方法[J]. 软件, 2020,41(1):29-35.
|