[1] 郭剑. 视频监控系统在消防指挥调度中的作用[J]. 信息安全与技术, 2012,3(7):89-91.
[2] FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics, 2008,27(3): Article No. 72, DOI: 10.1145/1360612.1360671.
[3] ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015,24(11):3522-3533.
[4] CHOI L K, YOU J, BOVIK A C. Referenceless prediction of perceptual fog density and perceptual image defogging[J]. IEEE Transactions on Image Processing, 2015,24(11):3888-3901.
[5] CAI B L, XU X M, JIA K, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016,25(11):5187-5198.
[6] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(12):2341-2353.
[7] 许骏. 面向火灾场景的图像去烟雾系统研究[D]. 上海:东华大学, 2016.
[8] 张金泉,杨进华,卢珊. 基于同态滤波的图像去烟雾方法研究[J]. 科技信息, 2009(7):71.
[9] 李庆忠,刘清. 基于小波变换的低照度图像自适应增强算法[J]. 中国激光, 2015,42(2):272-278.
[10]李垚峰,何小海,吴小强. 改进的带色彩恢复的多尺度Retinex雾天图像增强算法[J]. 计算机应用, 2014,34(10):2996-2999.
[11]PARTHASARATHY S, SANKARAN P. A Retinex based haze removal method[C]// Proceedings of the 2012 IEEE 7th International Conference on Industrial and Information Systems. 2012, DOI: 10.1109/ICIInfS.2012.6304767.
[12]LAND E H. The Retinex theory of color vision[J]. Scientific American, 1977,237(6):108-128.
[13]李森. 火灾初期建筑内图像清晰化及人员检测技术研究[D]. 合肥:中国科学技术大学, 2014.
[14]LI B Y, PENG X L, WANG Z Y, et al. An all-in-one network for dehazing and beyond[J]. arXiv preprint arXiv:1707.06543, 2017.
[15]CHEN W T, YUAN S Y, TSAI G C, et al. Color channel-based smoke removal algorithm using machine learning for static images[C]// Proceedings of the 2018 25th IEEE International Conference on Image Processing. 2018:2855-2859.
[16]BOLKAR B, WANG C C, CHEIKH F A, et al. Deep smoke removal from minimally invasive surgery videos[C]// Proceedings of the 2018 25th IEEE International Conference on Image Processing. 2018:3403-3407.
[17]李鹏越,田建东,王国霖,等. 面向机器人环境共融的图像去雪算法[J]. 机械工程学报, 2019,55(11):98-104.
[18]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[19]RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015:234-241.
[20]HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:2261-2269.
[21]ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:3194-3203.
[22]LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2017:136-144.
[23]REN W Q, MA L, ZHANG J W, et al. Gated fusion network for single image dehazing[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. 2018:3253-3261.
|