计算机与现代化

• 数据库与数据挖掘 • 上一篇    下一篇

基于非负矩阵分解与相似性分析的运动目标检测

  

  1. (河海大学物联网工程学院,江苏常州213022)
  • 出版日期:2018-04-28 发布日期:2018-05-02
  • 作者简介: 范新南(1965),男,江苏宜兴人,河海大学物联网工程学院教授,博士生导师,博士,研究方向:智能感知与信息处理; 薛瑞阳(1993),男,陕西渭南人,硕士研究生,研究方向:智能信息获取与处理。
  • 基金资助:
    国家自然科学基金资助项目(61573128); 江苏省自然科学基金资助项目(BK20170305)

Moving Object Detection Based on NMF and Similarity Analysis

  1. (College of Internet of Things Engineering, Hohai University, Changzhou 213022, China)
  • Online:2018-04-28 Published:2018-05-02

摘要: 提出一种结合修正的非负矩阵分解与向量相似性分析进行运动目标检测的方法。该方法首先使用修正后的非负矩阵分解算法从连续图像序列中恢复出背景图像,然后分析待检测帧像素点与恢复出来的背景模型之间的相似性,根据相似性的高低区分背景与前景。为了减少计算量,降低动态背景对检测结果的干扰,该方法在进行相似性分析之前,通过核密度估计的方法对运动区域进行估计。实验结果表明,该方法能够较为精确地恢复出背景图像,并有效地检测出运动目标。

关键词: 图像处理, 运动目标检测, 非负矩阵分解, 核密度估计, 区域提取

Abstract:  An algorithm of moving object detection fusing nonnegative matrix factorization (NMF) and vector similarity analysis is proposed. Firstly, the background is reconstructed from the continuous image sequence by using the modified NMF algorithm. Then, the similarity between the detected pixel and the recovered background model is analyzed, and the background and foreground are distinguished according to the similarity. In order to reduce the amount of computation and reduce the interference of dynamic background to the detection results, the method of kernel density estimation (KDE) is used to estimate the motion area before the similarity analysis is performed. The experimental results show that the proposed algorithm can recover the background image more accurately and detect the moving object effectively.

Key words: image processing, moving object detection, NMF, kernel density estimation, region extraction

中图分类号: