[1] 王宝新. 静脉输液的变革及对发展的建议[J]. 中国医药杂志, 2004,39(4):314-315.
[2] 何成,王耀南. 罐装液体药品质量的机器视觉检测与识别[J]. 中南大学学报,2009,40(4):1003-1008.〖HJ1.09mm〗
[3] BOYER K L, OZGUNER T. Robust online detection of pipeline corrosion from range data[J]. Machine Vision and Applications, 2001(12):291-304.
[4] 余永维,杜柳青,曾翠兰,等. 基于深度学习特征匹配的铸件微小缺陷自动定位方法[J]. 仪器仪表学报, 2016,37(6):1364-1370.
[5] 关秋雨. 大输液瓶外观灯检算法研究[D]. 哈尔滨:哈尔滨工业大学, 2018.
[6] 安宗权,王匀. 基于线激光与模板匹配的工件表面平坦度测量[J]. 控制工程, 2018,25(2):341-345.
[7] 张俊峰,尚振宏,刘辉. 基于颜色特征与模板匹配的车牌识别系统设计与实现[J]. 软件导刊, 2018,17(1):212-215.
[8] 付兴勇,任德均,严扎杰,等. 基于模板匹配的透明盒缺陷检测[J]. 软件导刊, 2019,18(3):187-191.
[9] 丁筱玲,赵强,李贻斌,等. 基于模板匹配的改进型目标识别算法[J]. 山东大学学报, 2018,48(2):1-7.
[10]钱俞好,周军,田胜,等. 基于机器视觉检测印刷码的改进模板匹配算法研究[J]. 机电工程, 2018,35(4):442-446.
[11]孙炼杰,樊臻. 基于模板匹配的光纤收发PCB板目标检测[J]. 计算机应用与软件, 2018,35(1):128-131.
[12]李军锋,何双伯,冯伟夏,等. 基于改进CNN的增强现实变压器图像识别技术[J]. 现代电子技术, 2018,41(7):29-32.
[13]吴水清,王宇,师岩. 基于SSD的车辆目标检测[J]. 计算机与现代化, 2019(5):35-40.
[14]ATWOOD J, TOWSLEY D. Diffusion-convolutional neural networks[C]// Advances in Neural Information Processing Systems. 2016:1993-2001.
[15]朱茂桃,张鸿翔,方瑞华. 基于RCNN的车辆检测方法研究[J]. 机电工程, 2018,35(8):880-885.
[16]向灿群. 卷积神经网络在图像分类识别中的应用研究[D]. 岳阳:湖南理工学院, 2018.
[17]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[18]LIN T Y, GOYAL P, GIRSHICK R B, et al. Focal loss for dense object detection[C]// 2017 International Conference on Computer Vision. 2017:2999-3007.
[19]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. Computer Vision and Pattern Recognition, 2018:arXiv:1709.01507.
[20]LIU W, ANGUELOV D, ERHAN D, et al. SSD:Single shot multibox detector[C]// European Conference on Computer Vision. 2016:21-37.
[21]GIRSHICK R B. Fast R-CNN[C]// 2015 International Conference on Computer Vision. 2015:1440-1448.
[22]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(6):91-99.
[23]SANDLER M B, HOWARD A, ZHU M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[J]. Computer Vision And Pattern Recognition, 2018:arXiv:1801.04381. |