[1] |
康重庆,夏清,张伯明. 电力系统负荷预测研究综述与发展方向的探讨[J]. 电力系统自动化, 2004,28(17):1-11.
|
[2] |
康重庆,夏清,刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社, 2017.
|
[3] |
孔祥玉,李闯,郑锋,等. 基于经验模态分解与特征相关分析的短期负荷预测方法[J]. 电力系统自动化, 2019,43(5):46-52.
|
[4] |
田英杰,苏运,郭乃网,等. 基于时间序列嵌入的电力负荷预测方法[J]. 计算机应用与软件, 2018,35(11):55-60.
|
[5] |
石文清,吴开宇,王东旭,等. 基于时间序列分析和卡尔曼滤波算法的电力系统短期负荷预测[J]. 自动化技术与应用, 2018,37(9):9-12.
|
[6] |
EROSHENKO S A, POROSHIN V I, SENYUK M D, et al. Expert models for electric load forecasting of power system[C]// Proceedings of the 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering. 2017:1507-1513.
|
[7] |
LAHOUAR A, BEN HADJ SLAMA J. Day-ahead load forecast using random forest and expert input selection[J]. Energy Conversion and Management, 2015,103:1040-1051.
|
[8] |
HONG T, WANG P, LEE WILLIS H. A naive multiple linear regression benchmark for short term load forecasting[C]// Proceedings of the 2011 IEEE Power and Energy Society General Meeting. 2011, DOI: 10.1109/PES.2011.6038881.
|
[9] |
黄南天,齐斌,刘座铭,等. 采用面积灰关联决策的高斯过程回归概率短期负荷预测[J]. 电力系统自动化, 2018,42(23):64-71.
|
[10] |
吴倩红,高军,侯广松,等. 实现影响因素多源异构融合的短期负荷预测支持向量机算法[J]. 电力系统自动化, 2016,40(15):67-72.
|
[11] |
张宇帆,艾芊,肖斐,等. 数据驱动电能质量分析现状及其支撑技术与展望[J]. 电力自动化设备, 2018,38(11):187-196.
|
[12] |
刘羽霄,张宁,康重庆. 数据驱动的电力网络分析与优化研究综述[J]. 电力系统自动化, 2018,42(6):157-167.
|
[13] |
姚佳馨,田慧欣. 基于改进数据驱动子空间算法的电力负荷预测[J]. 计算机工程, 2015,41(5):311-315.
|
[14] |
郑伟民,叶承晋,张曼颖,等. 基于Softmax概率分类器的数据驱动空间负荷预测[J]. 电力系统自动化, 2019,43(9):117-124.
|
[15] |
孔祥玉,郑锋,鄂志君,等. 基于深度信念网络的短期负荷预测方法[J]. 电力系统自动化, 2018,42(5):133-139.
|
[16] |
夏博,杨超,李冲. 电力系统短期负荷预测方法研究综述[J]. 电力大数据, 2018,21(7):22-28.
|
[17] |
杨挺,赵黎媛,王成山. 人工智能在电力系统及综合能源系统中的应用综述[J]. 电力系统自动化, 2019,43(1):2-14.
|
[18] |
程乐峰,余涛,张孝顺,等. 机器学习在能源与电力系统领域的应用和展望[J]. 电力系统自动化, 2019,43(1):15-31.
|
[19] |
张彦宇,肖茜. 国内外关于电力系统负荷预测的研究现状分析[J]. 山东工业技术, 2016(11):215.
|
[20] |
贺兴,邱才明,艾芊,等. 基于随机矩阵理论的配电网时空大数据研究[J]. 供用电, 2017,34(6):14-19.
|
[21] |
刘正超,吴科成,蔡珑,等. 基于线性Bregman方法的缺失负荷数据低秩矩阵补全[J]. 广东电力, 2018,31(5):68-73.
|
[22] |
苏运,卜凡鹏,郭乃网,等. 基于低秩表示的多任务短期电力负荷预测的研究[J]. 现代电力, 2019,36(3):58-65.
|
[23] |
CANDES E J, PLAN Y. Matrix completion with noise[J]. Proceedings of the IEEE, 2010,98(6):925-936.
|
[24] |
CAI J F, CANDES E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010,20(4):1956-1982.
|
[25] |
CANDES E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009,9(6):717-772.
|
[26] |
CANDES E J, LI X D, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011,58(3): Article No. 11, DOI: 10.1145/1970392.1970395.
|
[27] |
ZHOU Z H, LI X D, WRIGHT J, et al. Stable principal component pursuit[C]// Proceedings of the 2010 IEEE International Symposium on Information Theory. 2010:1518-1522.
|
[28] |
LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]// Proceedings of the 13th International Conference on Neural Information Processing Systems. 2000:535-541.
|
[29] |
DING C H Q, LI T, JORDAN M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32(1):45-55.
|
[30] |
GU Q Q, ZHOU J, DING C H Q. Collaborative filtering: Weighted nonnegative matrix factorization incorporating user and item graphs[C]// Proceedings of the 10th SIAM International Conference on Data Mining. 2010:199-210.
|
[31] |
PEI Y L, CHAKRABORTY N, SYCARA K. Nonnegative matrix tri-factorization with graph regularization for community detection in social networks[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. 2015:2083-2089.
|
[32] |
WANG H, NIE F P, HUANG H, et al. Fast nonnegative matrix tri-factorization for large-scale data co-clustering[C]// Proceedings of the 22nd International Joint Conference on Artificial Intelligence. 2011,2:1553-1558.
|
[33] |
LIN Z C, LIU R S, SU Z X. Linearized alternating direction method with adaptive penalty for low-rank representation[C]// Proceedings of the 23th International Conference on Neural Information Processing Systems. 2011:612-620.
|
[34] |
LIU G C, LIN Z C, YU Y. Robust subspace segmentation by low-rank representation[C]// Proceedings of the 27th International Conference on Machine Learning. 2010:663-670.
|
[35] |
隋惠惠. 基于BP神经网络的短期电力负荷预测的研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
|
[36] |
吴云,雷建文,鲍丽山,等. 基于改进灰色关联分析与蝙蝠优化神经网络的短期负荷预测[J]. 电力系统自动化, 2018,42(20):67-72.
|
[37] |
吴潇雨,和敬涵,张沛,等. 基于灰色投影改进随机森林算法的电力系统短期负荷预测[J]. 电力系统自动化, 2015,39(12):50-55.
|
[38] |
SUN D D, LIANG H D, GE M L, et al. Protein functional annotation refinement based on graph regularized L1-norm PCA[J]. Pattern Recognition Letters, 2017,87:212-221.
|