[1] |
贾俊栋,岳卫东. 脑小血管病研究进展[J]. 中国现代神经疾病杂志, 2015,15(2):98-102.
|
[2] |
HACHINSKI V C, POTTER P, MERSKEY H. Leuko-araiosis[J]. Archives of Neurology, 1987,44(1):21-23.
|
[3] |
王兴,施余露,陈奕奕,等. 脑小血管病脑白质高信号与认知障碍的关系研究进展[J]. 中国卒中杂志, 2019,14(11):1146-1152.
|
[4] |
周心连,雷春艳,杨云凤,等. 脑白质高信号对急性缺血性脑卒中取栓预后影响的研究进展[J]. 中国医学创新, 2022,19(20):163-169.
|
[5] |
傅元芳,李启权,钟兴,等. MRI脑室四周白质高信号的表现及临床意义[J]. 中国医学影像技术, 2000,16(9):744-746.
|
[6] |
RUTTEN-JACOBS L C A, TOZER D J, DUERING M, et al. Genetic study of white matter integrity in UK Biobank (N=8448) and the overlap with stroke, depression, and dementia[J]. Stroke, 2018,49(6):1340-1347.
|
[7] |
SHELINE Y I, PRICE J L, VAISHNAVI S N, et al. Regional white matter hyperintensity burden in automated segmentation distinguishes late-life depressed subjects from comparison subjects matched for vascular risk factors[J]. The American Journal of Psychiatry, 2008,165(4):524-532.
|
[8] |
费贝妮,成宇,刘颖,等. 基于智能分割分析脑小血管病患者白质高信号与认知功能的相关性研究[J]. 中国临床神经科学, 2021,29(3):265-271.
|
[9] |
DEBETTE S, MARKUS H S. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: Systematic review and meta-analysis[J]. The British Medical Journal (Clinical Research ed.), 2010,341. DOI: 10.1136/bmj.c3666.
|
[10] |
KLOPPENBORG R P, NEDERKOORN P J, GEERLINGS M I, et al. Presence and progression of white matter hyperintensities and cognition: A meta-analysis[J]. Neurology, 2014,82(23):2127-2138.
|
[11] |
SIVAKUMAR L, RIAZ P, KATE M, et al. White matter hyperintensity volume predicts persistent cognitive impairment in transient ischemic attack and minor stroke[J]. International Journal of Stroke, 2017,12(3):264-272.
|
[12] |
SAMAILLE T, FILLON L, CUINGNET R, et al. Contrast-based fully automatic segmentation of white matter hyperintensities: Method and validation[J]. PLoS ONE, 2012,7(11). DOI: 10.1371/journal.pone.0048953.
|
[13] |
DADAR M, MARANZANO J, MISQUITTA K, et al. Performance comparison of 10 different classification techniques in segmenting white matter hyperintensities in aging[J]. NeuroImage, 2017,157:233-249.
|
[14] |
GRIFFANTI L, ZAMBONI G, KHAN A, et al. BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities[J]. NeuroImage, 2016,141:191-205.
|
[15] |
SCHWARZ C G, FLETCHER E, SINGH B, et al. Most edges in Markov random fields for white matter hyperintensity segmentation are worthless[C]// Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012:2684-2687.
|
[16] |
MOESKOPS P, DE BRESSER J, KUIJF H J, et al. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI[J]. NeuroImage: Clinical, 2018,17:251-262.
|
[17] |
LI H W, JIANG G F, ZHANG J G, et al. Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images[J]. NeuroImage, 2018,183:650-665.
|
[18] |
GONG T, HAN H L, TAN Z, et al. Segmentation and differentiation of periventricular and deep white matter hyperintensities in 2D T2-FLAIR MRI based on a cascade U-Net[J]. Frontiers in Neurology, 2022,13. DOI: 10.3389/fneur.2022.1021477.
|
[19] |
HUANG F, XIA P, VARDHANABHUTI V, et al. Semisupervised white matter hyperintensities segmentation on MRI[J]. Human Brain Mapping, 2023,44(4):1344-1358.
|
[20] |
WANG Z W, SMITH C D, LIU J D. Ensemble of multi-sized FCNs to improve white matter lesion segmentation[C]// Proceedings of the 9th International Workshop on Machine Learning in Medical Imaging. 2018:223-232.
|
[21] |
SUNDARESAN V, ZAMBONI G, ROTHWELL P M, et al. Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images[J]. Medical Image Analysis, 2021,73. DOI: 10.1016/j.media.2021.102184.
|
[22] |
赵欣,石德来,王洪凯. 基于3D全卷积深度神经网络的脑白质病变分割方法[J]. 计算机与现代化, 2020(10):44-50.
|
[23] |
LIU L L, CHEN S W, ZHU X F, et al. Deep convolutional neural network for accurate segmentation and quantification of white matter hyperintensities[J]. Neurocomputing, 2020,384:231-242.
|
[24] |
ZHU W H, HUANG H, ZHOU Y Q, et al. Automatic segmentation of white matter hyperintensities in routine clinical brain MRI by 2D VB-Net: A large-scale study[J]. Frontiers in Aging Neuroscience, 2022,14. DOI: 10.3389/fnagi.2022.915009.
|
[25] |
CHEN J N, LU Y Y, YU Q H, et al. TransUNet: Transformers make strong encoders for medical image segmentation[J]. arXiv preprint arXiv:2102.04306, 2021.
|
[26] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention. 2015:234-241.
|
[27] |
OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1):62-66.
|
[28] |
ZACK G W, ROGERS W E, LATT S A. Automatic measurement of sister chromatid exchange frequency[J]. Journal of Histochemistry & Cytochemistry, 1977,25(7):741-753.
|
[29] |
刘健庄,栗文青. 灰度图象的二维Otsu自动阈值分割法[J]. 自动化学报, 1993,19(1):101-105.
|
[30] |
ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:286-301.
|
[31] |
ROY A G, NAVAB N, WACHINGER C. Concurrent spatial and channel ‘squeeze & excitation’ in fully convolutional networks[C]// Proceedings of the 2018 International Conference on Medical Image Computing and Computer-assisted Intervention. 2018:421-429.
|
[32] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
|
[33] |
KUIJF H J, BIESBROEK J M, DE BRESSER J, et al. Standardized assessment of automatic segmentation of white matter hyperintensities and results of the WMH segmentation challenge[J]. IEEE Transactions on Medical Imaging, 2019,38(11):2556-2568.
|
[34] |
SALEHI S S M, ERDOGMUS D, GHOLIPOUR A. Tversky loss function for image segmentation using 3D fully convolutional deep networks[C]// Proceedings of the 8th International Workshop on Machine Learning in Medical Imaging. 2017:379-387.
|
[35] |
ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020,39(6):1856-1867.
|
[36] |
ZUO Q, CHEN S Y, WANG Z F. R2AU-Net: Attention recurrent residual convolutional neural network for multimodal medical image segmentation[J]. Security and Communication Networks, 2021,2021. DOI: 10.1155/2021/6625688.
|
[37] |
WOO S Y, PARK J C, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:3-19.
|