[1] |
CHEN N S, ZHOU M, DONG X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study[J]. The Lancet, 2020,395(10223):507-513.
|
[2] |
YANG X B, YU Y, XU J Q, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective,observational study[J]. The Lancet Respiratory Medicine, 2020,8(5):475-481.
|
[3] |
SILVERMAN J D, HUPERT N, WASHBURNE A D. Using influenza surveillance networks to estimate state-specific prevalence of SARS-CoV-2 in the United States[J]. Science Translational Medicine, 2020,12(554). DOI:10.1126/scitranslmed.abc1126.
|
[4] |
WHO. Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: Interim guidance[EB/OL]. [2021-01-25]. https://apps.who.int/iris/handle/10665/330893.
|
[5] |
WHO. Laboratory testing for coronavirus disease 2019 (COVID-19) in suspected human cases: Interim guidance[EB/OL]. [2020-03-02]. https://apps.who.int/iris/ha-ndle/10665/3313292020.
|
[6] |
ELSKEN T, METZEN J H, HUTTER F. Neural architecture search: A survey[J]. The Journal of Machine Learning Research, 2019,20(1):1997-2017.
|
[7] |
郑红颖,杨艳,倪佳琪,等. 人工智能临床应用研究进展[J]. 护理研究, 2019,33(3):454-458.
|
[8] |
周文康,费艳颖. 医疗人工智能前沿研究:特征、趋势以及规制[J]. 医学与哲学, 2021,42(19):38-44.
|
[9] |
刘汉卿,康晓东,李博,等. 利用深度学习网络对医学影像分类识别的比较研究[J].计算机科学,2021,48(z1):89-94.
|
[10] |
LI L, QIN L X, XU Z G, et al. Using artificial intelligence to detect COVID-19 and community-acquired pneumonia based on pulmonary CT: Evaluation of the diagnostic accuracy[J]. Radiology, 2020,296(2):E65-E71.
|
[11] |
XU X W, JIANG X G, MA C L, et al. A deep learning system to screen novel coronavirus disease 2019 pneumonia[J]. Engineering (Beijing), 2020,6(10):1122-1129.
|
[12] |
吴辰文,梁雨欣,田鸿雁. 改进卷积神经网络的COVID-19 CT影像分类方法研究[J]. 计算机工程与应用, 2022,58(2):225-234.
|
[13] |
ZAGORUYKO S, KOMODAKIS N. Wide residual networks[C]// Proceedings of the British Machine Vision Conference. 2016,87:1-12.
|
[14] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012:1097-1105.
|
[15] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014(3):11-18.
|
[16] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of IEEE Conference on ComputerVision and Pattern Recognition(CVPR). 2016:770-778.
|
[17] |
TAN M, LE Q V. EfficientNet: Rethinking model scaling for convolutional neural networks[C]// Proceedings of International Conference on Machine Learning. 2019:6105-6114.
|
[18] |
TAN M X, CHEN B, PANG R M, et al. MnasNet: Platform-aware neural architecture search for mobile[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:2815-2823.
|
[19] |
HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
|
[20] |
GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: A survey[J]. arXiv reprint arXiv:2111.07624v1, 2021.
|
[21] |
WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module springer, cham[J]. arXiv reprint arXiv:1807.06521v2, 2018.
|
[22] |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:
|
|
510-519.
|
[23] |
刘锐,丁辉,尚媛园,等. COVID-19医学影像数据集及研究进展[J]. 计算机工程与应用, 2021,57(22):15-27.
|
[24] |
易三莉,王天伟,杨雪莲,等. ARS-CNN算法在新冠肺炎识别中的研究[J]. 液晶与显示, 2021,36(11):1565-1572.
|
[25] |
冯毅博,仇大伟,曹慧,等. 基于深度可分离稠密网络的新型冠状病毒肺炎X线图像检测方法研究[J]. 生物医学工程学杂志, 2020,37(4):557-565.
|
[26] |
KULKARNI S, SENEVIRATNE N, BAIG M S, et al. Artificial intelligence in medicine: Where are we now?[J]. Academic Radiology, 2019,27(1):1-9.
|