[1] PFURTSCHELLER G, NEUPER C, GUGER C, et al. Current trending Graz brain-computer interface(BCI) research[J]. IEEE Transactions on Rehabilitation Engineering, 2000,8(2):216-219.
[2] ANDERSON C W, STOLZ E A, SHAMSUNDER S. Multivariate auto regressive models for classification of spontaneous electro encephalographic signals during mental tasks[J]. IEEE Transactions on Biomed Engineering, 1998,45(3):277-286.
[3] KEVRIC J, SUBASI A. Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system[J]. Biomedical Signal Processing and Control, 2017,31:398-406.
[4] 段锁林,尚允坤,潘礼正. 多类运动想象脑电信号特征提取与分类[J]. 计算机测量与控制, 2016,24(2):283-287.
[5] BURKE D P, KELLY S P, DE CHAZAL P, et al. A parametric feature extraction and classification strategy for brain-computer interfacing[J]. IEEE Transactions on Neural System Rehabilitation Engineering, 2005,13(1):12-17.
[6] HSU W Y. Embedded prediction in feature extraction: Application to single-trial EEG discrimination[J]. Clinal EEG and Neurosci, 2013,44(1):31-38.
[7] WANG Y R, LI X, LI H H, et al. Feature extraction of motor imagery electroencephalography based on time frequency-space domains[J]. Journal of Biomedical Engineering, 2014,31(5):955-961.
[8] 程龙龙,明东,刘双迟,等. 脑机接口研究中想象动作电位的特征提取与分类算法[J]. 仪器仪表学报, 2008,29(8):1773-1778.
[9] 徐宝国,宋爱国,费树岷. 在线脑机接口中脑电信号的特征提取与分类方法[J]. 电子学报, 2011,39(5):1025-1030.
[10]NOVI Q, GUAN C T, DAT T H, et al. Sub-band common spatial pattern(SBCSP) for brain computer interface[C]// International IEEE/EMBS Conference on Neural Engineering. 2007:219-225.
[11]WU T, YANG G Z, YANG B H, et al. EEG feature extraction based on wavelet packet decomposition for brain computer interface[J]. Measurement, 2008,41(6):618-625.
[12]YANG B H, YAN G Z, YAN R G, et al. Feature extraction for EEG-based brain-computer interfaces by wavelet packet best basis decomposition[J]. Journal of Neural Engineering, 2006,3(4):251-256.
[13]HSU W Y, LIN C C, JU M S, et al. Wavelet based fractal features with active segment selection: Application to single-trial EEG data[J]. Journal of Neurosci Method, 2007,163(1):145-160.
[14]YILDIZ A, AKIN M, POYRAZ M, et al. Application of adaptive neuro-fuzzy inference system for vigilance level estimation by using wavelet entropy feature extraction[J]. Expert System Application, 2009,36(4):7390-7399.
[15]XU Q, ZHOU H, WANG Y J, et al. Fuzzy support vector machine for classification of EEG signal using wavelet-based features[J]. Medical Engineering & Physics, 2009,31:858-856。
[16]赵建林,周卫东,刘凯,等. 基于SVM和小波分析的脑电信号分类方法[J]. 计算机应用与软件, 2011,28(5):114-116.
[17]郭红想,严军,王典洪,等. 基于小波包和组合分类器的脑电信号分类[J]. 计算机工程与应用, 2016,52(18):148-153.
[18]王登,苗夺谦,王睿智. 一种新的基于小波包分解的EEG特征抽取与识别方法研究[J]. 电子学报, 2013,41(1):193-198.
[19]于路,薄华. 基于改进EMD的运动想象脑电信号识别算法研究[J]. 微型机与应用, 2016,35(9):58-63.
[20]袁玲,杨帮华,马世伟. 基于HHT和SVM的运动想象脑电识别[J]. 仪器仪表学报, 2010,31(3):650-654.
[21]杜兰,史蕙若,李林森,等. 基于分数阶傅里叶变换的窄带雷达飞机目标回波特征提取方法[J]. 电子与信息学报, 2016,12(38):3093-3099.
[22]TIPPING M E, BISHOP C M. Probabilistic principle component analysis[J]. Journal of Royal Statistical Society, 1999,61(3):611-622.
|