[1] ZHENG L, WANG S J, TIAN L, et al. Query-adaptive late fusion for image search and person re-identification[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:1741-1750.
[2] MATSUKAWA T, OKABE T, SUZUKI E, et al. Hierarchical Gaussian descriptor for person re-identification[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:1363-1372.
[3] KHAMIS S, KUO C H, SINGH V K, et al. Joint learning for attribute-consistent person re-identification[C]// European Conference on Computer Vision. 2014:134-146.
[4] LI Y J, ZHUO L, HU X C, et al. A combined feature representation of deep feature and hand-crafted features for person re-identification[C]// 2016 International Conference on Progress in Informatics and Computing. 2017:224-227.
[5] 蔡芷茵,高炜,俞祝良,等. 基于三元组卷积神经网络的图像检索[J]. 西安邮电大学学报, 2016,21(6):60-64.
[6] ZHENG L, HUANG Y J, LU H C, et al. Pose invariant embedding for deep person re-identification[J]. Computer Vision and Pattern Recognition, 2017:arXiv:1701.07732.
[7] QI M B, HAN J X, JIANG J G, et al. Deep feature representation and multiple metric ensembles for person re-identification in security surveillance system[J]. Multimedia Tools and Applications, 2017(4):1-15.
[8] LIU H, FENG J S, QI M B, et al. End-to-end comparative attention networks for person re-identification[J]. IEEE Transactions on Image Processing, 2017,26(7):3492-3506.
[9] WANG F Q, ZUO W M, LIN L, et al. Joint learning of single-image and cross-image representations for person re-identification[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:1288-1296.
[10]张丽红,孙志琳. 基于多层深度特征融合的行人再识别研究[J]. 测试技术学报, 2018,32(4):318-322.
[11]CHENG D, GONG Y H, ZHOU S P, et al. Person re-identification by multi-channel parts-based CNN with improved triplet loss function[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:1335-1344.
[12]ZHOU Z, HUANG Y, WANG W, et al. See the forest for the trees: Joint spatial and temporal recurrent neural networks for video-based person re-identification[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6776-6785.
[13]孙锐,黄启恒,陆伟明,等. 联合多级深度特征表示和有序加权距离融合的视频行人再识别方法[J/OL]. 光学学报, 2019(9):1-24[2019-09-07]. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=GXXB201909033.
[14]CHAIB S, LIU H, GU Y F, et al. Deep feature fusion for VHR remote sensing scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017(99):1-10.
[15]WANG J, WANG Z, GAO C X, et al. DeepList: Learning deep features with adaptive listwise constraint for person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017,27(3):513-524.
[16]LEE G Y, TAI Y W, KIM J. ELD-Net: An efficient deep learning architecture for accurate saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,40(7):1599-1610.
[17]ZHAO C R, CHEN K, WEI Z H, et al. Multilevel triplet deep learning model for person re-identification[J]. Pattern Recognition Letters, 2019,117(1):161-168.
[18]杨观赐,杨静,李少波,等. 基于Dopout与ADAM优化器的改进CNN算法[J]. 华中科技大学学报(自然科学版), 2018,46(7):122-127.
[19]HUANG Z L, WANG Z, SATOH S, et al. Group re-identification via transferred single and couple representation learning[J]. Computer Vision and Pattern Recognition, 2019:arXiv:1905.04854.
[20]VARIOR R R, HALOI M, WANG G. Gated Siamese convolutional neural network architecture for human re-identification[C]// European Conference on Computer Vision. 2016:791-808.
[21]SU C, ZHANG S L, XING J L, et al. Deep attributes driven multi-camera person re-identification[C]// European Conference on Computer Vision. 2016:475-491.
[22]WANG S K, ZHANG C, DUAN L H, et al. Person re-identification based on deep spatio-temporal features and transfer learning[C]// 2016 International Joint Conference on Neural Networks. 2016:1660-1665.
[23]陈莹,霍中花. 多方向显著性权值学习的行人再识别[J]. 中国图象图形学报, 2015,20(12):1674-1683.
|