计算机与现代化

• 网络与通信 • 上一篇    下一篇

基于深度学习的威胁情报知识图谱构建技术

  

  1. (中国电子科技集团公司第十五研究所系统六部,北京100083)
  • 收稿日期:2018-07-23 出版日期:2019-01-03 发布日期:2019-01-04
  • 作者简介:王通(1994-),男,北京人,中国电子科技集团公司第十五研究所系统六部硕士研究生,研究方向:网络安全,机器学习; 艾中良(1971-),男,正研级高级工程师,硕士,研究方向:网格计算,信息共享和信息安全; 张先国(1981-),男,高级工程师,硕士,研究方向:网络安全。

Knowledge Graph Construction of Threat Intelligence Based on Deep Learning

  1. (Sixth System Department, Fifteenth Institute, China Electronics Technology Group Corporation, Beijing 100083, China)
  • Received:2018-07-23 Online:2019-01-03 Published:2019-01-04

摘要: 随着网络威胁日益增多,威胁情报的知识图谱构建技术成为了网络安全领域的重要研究方向;然而,目前知识图谱构建技术对知识的获取缺乏快速性和准确性。针对这些问题,本文提出一种监督性的深度学习模型,对威胁情报的实体和实体关系进行自动化抽取,并通过图数据库进行知识图谱的可视化展示。实验结果表明,本文提出的基于深度学习模型对威胁情报实体和实体抽取的方法,在准确性上有着较大提高,为自动化构建威胁情报知识图谱提供有力的保障。

关键词: 威胁情报, 实体抽取, 深度学习, 知识图谱

Abstract: With the increasing number of cyber threats, the knowledge graph construction technology of threat intelligence has become an important research direction in the field of network security. However, the current knowledge graph construction technology lacks the speed and accuracy of knowledge acquisition. In view of these problems, this paper proposes a supervised deep learning model, which automatically extracts the entity and entity relationship of threat intelligence, and visualizes the knowledge map through graph data. The experimental results show that the method based on the deep learning model for threat intelligence entities and entities extraction has a great improvement in accuracy, which provides a powerful guarantee for the automated construction of threat intelligence knowledge graph.

Key words: threat intelligence, entity extraction, deep learning, knowledge graph

中图分类号: