计算机与现代化 ›› 2025, Vol. 0 ›› Issue (12): 46-53.doi: 10.3969/j.issn.1006-2475.2025.12.007

• 算法设计与分析 • 上一篇    下一篇

多视图IM-NET三维目标精细化重建

  


  1. (1.赣南师范大学科技学院,江西 赣州 341000; 2.广东茂名幼儿师范专科学校计算机学院,广东 茂名 525000;
    3.广州华商学院,广东 广州 511300; 4.江西理工大学信息工程学院,江西 赣州 341000) 
  • 出版日期:2025-12-18 发布日期:2025-12-18
  • 作者简介:作者简介:刘健龙(2000—),男,江西赣州人,硕士,研究方向:图像三维重建,E-mail: liujianlong00@hotmail.com; 岑颖(1981—),男,广东高州人,助教,硕士,研究方向:计算机视觉,E-mail: 13553683306@139.com; 许斌(2000—),男,江西吉安人,硕士,研究方向:计算机视觉,E-mail: Xb_200010@163.com; 焦旋(2001—),男,河南新乡人,硕士研究生,研究方向:图像三维重建,E-mail: 6720230834@mail.jxust.edu.cn。
  • 基金资助:
    基金项目:江西省自然科学基金资助项目(20224BAB202002)
        

Multi-view IM-NET for Fine Reconstruction of 3D Object


  1. (1. College of Science and Technology, Gannan Normal University, Ganzhou 341000, China; 2. School of Computing, Guangdong
    Preschool Normal College in Maoming, Maoming 525000, China; 3. Guangzhou Huashang College, Guangzhou 511300, China; 
    4. School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China) 
  • Online:2025-12-18 Published:2025-12-18

摘要: 摘要:隐式表达网络(Implicit Net, IM-NET)将三维目标重建转换为空间中的采样点是否在目标表面或内部的分类问题,有效地节约了计算和存储资源。然而,IM-NET只能从单幅视图中重建三维目标,单视图中有限的目标信息量尤其是被遮挡部分的信息缺失,导致了目标重建精度的不足。本文将单视图IM-NET推广至多视图输入,采用注意力模块对多视图中提取出的特征进行融合,以获取更为完整的目标特征,从而提升三维重建精度。考虑到从隐式表达到网格显示表达的转换过程中,Marching Cubes算法所生成的目标表面不够平滑,本文进一步采用网格细化方法对重建目标进行多次迭代细化,以实现精细化重建。在ShapNet数据集上的实验结果表明,与单视图IM-NET和其他多视图重建方法相比,本文提出的多视图IM-NET重建出的三维目标更为完整和平滑,且目标的平均交并比得到大幅度提升。此外,可视化效果表明,经过细化后的目标细节更丰富且表面更平滑。


关键词: 关键词:深度学习, 三维重建, IM-NET, 多视图

Abstract: Abstract: Implicit net (IM-NET) converts the task of reconstructing three-dimensional (3D) objects into a classification issue concerning whether sampled points in space are on or inside the object’s surface, effectively conserving computational and storage resources. However, IM-NET can only reconstruct 3D objects from a single view, and the limited amount of target information available in a single view, especially the missing information from occluded parts, leads to insufficient reconstruction accuracy. This paper extends IM-NET to adapt multi-view inputs by employing an attention module to fuse extracted features, thereby obtaining more complete target features and enhancing 3D reconstruction accuracy. Considering that the target surface generated by the Marching Cubes algorithm is not smooth enough when converting implicit expression into explicit mesh representation, this paper utilizes a mesh refinement algorithm to refine the reconstructed targets iteratively, achieving the refined reconstruction. Experimental results on the ShapNet dataset indicate that compared with single-view IM-NET and other multi-view reconstruction methods, the proposed multi-view IM-NET reconstructs 3D targets more complete and smooth, and the average intersection and union ratios of targets are significantly improved. Additionally, visualization effects show that the refined targets have richer details and smoother surfaces than those without refinement. 

Key words: Key words: deep learning, 3D reconstruction, IM-NET, multi-view 

中图分类号: