[1] RICHTER S R, ALHAIJA H A, KOLTUN V. Enhancing photorealism enhancement[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023,45(2):1700-1715.
[2] XIANG L R, GAI J Y, BAO Y, et al. Field-based robotic leaf angle detection and characterization of maize plants using stereo vision and deep convolutional neural networks[J]. Journal of Field Robotics, 2023,40(5):1034-1053.
[3] DING C L, DAI Y F, FENG X M, et al. Stereo vision SLAM-based 3D reconstruction on UAV development platforms[J]. Journal of Electronic Imaging, 2023,32(1). DOI:
10.1117/1.JEI.32.013041.
[4] SUMETHEEPRASIT B, ROSALES MARTINEZ R, PAUL H, et al. Variable baseline and flexible configuration stereo vision using two aerial robots[J]. Sensors, 2023,23(3). DOI: 10.3390/S23031134.
[5] PETRAKIS G, ANTONOPOULOS A, TRIPOLITSIOTIS A, et al. Precision mapping through the stereo vision and geometric transformations in unknown environments[J]. Earth Science Informatics, 2023,16(2):1849-1865.
[6] 杨航,陈瑞,安仕鹏,等. 深度学习背景下的图像三维重建技术进展综述[J]. 中国图象图形学报, 2023,28(8):2396-2409.
[7] CHOY C B, XU D F, GWAK J Y, et al. 3D-R2N2: A unified approach for single and multi-view 3D object reconstruction[C]// Proceedings of the 14th European Conference on Computer Vision(ECCV 2016). Springer, 2016:628-644.
[8] TATARCHENKO M, DOSOVITSKIY A, BROX T. Octree generating networks:Efficient convolutional architectures for high-resolution 3D outputs[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. IEEE, 2017:2088-2096.
[9] FAN H Q, SU H, GUIBAS L J. A point set generation network for 3D object reconstruction from a single image[C]// 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2017:605-613.
[10] MELAS-KYRIAZI L, RUPPRECHT C, VEDALDI A. PC2:Projection-conditioned point cloud diffusion for single-image 3D reconstruction[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2023:12923-12932.
[11] GROUEIX T, FISHER M, KIM V G, et al. A papier-mâché approach to learning 3D surface generation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2018:216-224.
[12] WANG N Y, ZHANG Y D, LI Z W, et al. Pixel2Mesh: Generating 3D mesh models from single RGB images[C]// Proceedings of the 2018 European Conference on Computer Vision(ECCV). Springer, 2018:55-71.
[13] WEN C, ZHANG Y D, LI Z W, et al. Pixel2Mesh++: Multi-view 3D mesh generation via deformation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019:1042-1051.
[14] LIN K, WANG L J, LIU Z C. End-to-end human pose and mesh reconstruction with Transformers[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2021:1954-1963.
[15] CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2019:5939-5948.
[16] MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: Learning 3D reconstruction in function space[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2019:4460-4470.
[17] XU Q G, WANG W Y, CEYLAN D, et al. DISN: Deep implicit surface network for high-quality single-view 3D reconstruction[J]. arXiv preprint arXiv:1905.10711, 2019.
[18] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1):99-106.
[19] YANG Z Y, GAO X Y, ZHOU W, et al. Deformable 3D gaussians for high-fidelity monocular dynamic scene reconstruction[C]// 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2024:20331-20341.
[20] SAITO S, HUANG Z, NATSUME R, et al. PIFu: Pixel-aligned implicit function for high-resolution clothed human digitization[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019:2304-2314.
[21] SAITO S, SIMON T, SARAGIH J, et al. PIFuHD: Multi-level pixel-aligned implicit function for high-resolution 3D human digitization[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2020:84-93.
[22] PENG S Y, NIEMEYER M, MESCHEDER L, et al. Convolutional occupancy networks[C]// Proceedings of the 2020 European Conference on Computer Vision(ECCV). Springer, 2020:523-540.
[23] TANG J P, LEI J B, XU D, et al. SA-ConvONet: Sign-agnostic optimization of convolutional occupancy networks[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2021:6504-6513.
[24] BOULCH A, MARLET R. POCO: Point convolution for surface reconstruction[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2022:6302-6314.
[25] LORENSEN W E, CLINE H E. Marching Cubes: A high resolution 3D surface construction algorithm[J]. ACM SIGGRAPH Computer Graphics, 1987,21(4):163-169.
[26] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2016:770-778.
[27] YANG B, WANG S, MARKHAM A, et al. Robust attentional aggregation of deep feature sets for multi-view 3D reconstruction[J]. International Journal of Computer Vision, 2020,128(1):53-73.
[28] CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet:An information-rich 3D model repository[J]. arXiv preprint arXiv:1512.03012, 2015.
|