计算机与现代化 ›› 2025, Vol. 0 ›› Issue (11): 65-70.doi: 10.3969/j.issn.1006-2475.2025.11.008

• 图像处理 • 上一篇    下一篇

基于轻量级YOLOv8的变电站设备缺陷检测

  


  1. (1.济南轨道交通集团建设投资有限公司,山东 济南 250000; 2.济南轨道交通集团运营有限公司,山东 济南 250000;
    3.福建省电力有限公司,福建 福州 350003)
  • 出版日期:2025-11-20 发布日期:2025-11-24
  • 作者简介: 作者简介:孙二杰(1989—),男,山东聊城人,高级工程师,硕士,研究方向: 电气工程,控制工程,E-mail: fly1230801@163.com。
  • 基金资助:
     基金项目:国家自然科学基金资助项目(51977039)
       

Substation Equipment Defect Detection Based on Lightweight YOLOv8


  1. (1. Ji’nan Rail Transit Group Construction Investment Co., Ltd., Ji’nan 250000, China;
    2. Ji’nan Rail Transit Group Operation Co., Ltd., Jinan 250000, China;
    3. Fujian Electric Power Co., Ltd., Fuzhou 350003, China)
  • Online:2025-11-20 Published:2025-11-24

摘要: 摘要:随着智能电网的发展,变电站设备的稳定运行变得尤为重要。然而,由于现有检测模型体积庞大且对边缘端设备的部署要求高,传统的缺陷检测方法在应用中面临挑战。为了解决这一问题,本文提出一种基于改进YOLOv8的轻量化变电站设备缺陷检测模型。首先,通过引入C2f_Faster模块和Slim-Neck结构对模型的Backbone和Neck部分进行优化,以减少冗余计算和内存访问,解决特征冗余导致的检测精度低的问题。其次,检测头Detect_G模块的设计进一步提高模型的检测速度和精度。最后,模型中引入基于跨空间多尺度注意力机制,以增强对小目标变电站设备缺陷的检测能力。实验结果表明,本文算法在变电站缺陷数据集上的mAP达到了92.56%,模型参数量为5.9 M,检测速度为345.6 fps,性能优于SSD、Faster R-CNN、YOLOv4、YOLOv7和YOLOv8等主流算法。


关键词: 关键词:变电站设备缺陷检测; YOLOv8; 注意力机制; 轻量化模型 ,

Abstract: Abstract: With the development of smart grid, the stable operation of substation equipment becomes particularly important. However, due to the large size of existing detection models and the high requirements for the deployment of edge devices, the traditional defect detection methods face challenges in application. In order to solve this problem, this paper proposes a lightweight substation equipment defect detection model based on improved YOLOv8. Firstly, the Backbone and Neck parts of the model are optimized by introducing C2f_Faster block and Slim-Neck structure to reduce redundant calculation and memory access and solve the problem of low detection accuracy caused by feature redundancy. Secondly, the design of the Detect_G module further improves the speed and accuracy of the model detection. Finally, a multi-scale attention mechanism based on cross-space is introduced to enhance the detection ability of equipment defects in small target substations. Experimental results show that the proposed algorithm achieves 92.56% mAP, 5.9 M model parameter count and 345.6 fps detection speed on the substation defect dataset, and its performance is superior to other mainstream algorithms such as SSD, Faster R-CNN, YOLOv4, YOLOv7 and YOLOv8.

Key words: Key words: substation equipment defect detection, YOLOv8, attention mechanism, lightweight model

中图分类号: