计算机与现代化 ›› 2025, Vol. 0 ›› Issue (09): 14-19.doi: 10.3969/j.issn.1006-2475.2025.09.002

• 人工智能 • 上一篇    下一篇

面向密集场景的PB-YOLOv7行人检测方法

  


  1. (西安工程大学计算机科学学院,陕西 西安 710048)
  • 出版日期:2025-09-24 发布日期:2025-09-24
  • 作者简介: 作者简介:郭金豪(2000—),男,河南许昌人,硕士研究生,研究方向:深度学习,E-mail: gjh2597024947@163.com; 通信作者:王峰萍(1986—),女,河南南阳人,讲师,博士,研究方向:图像处理,E-mail: tiffany0209@126.com。
  • 基金资助:
    基金项目:陕西省省部级项目(2022JQ-624)
       

PB-YOLOv7 Pedestrian Detection Method for Dense Scenes


  1. (School of Computer Science, Xi’an Polytechnic University, Xi’an 710048, China)
  • Online:2025-09-24 Published:2025-09-24

摘要:
摘要:针对复杂背景下的密集人群检测过程存在的检测速度低、定位不精确等问题,提出一种密集场景行人检测方法PB-YOLOv7。首先,使用基于PP-LCNet的网络代替原主干特征网络,利用深度可分离卷积来降低模型运算过程中的复杂度;其次,采用双向特征金字塔网络BiFPN的特征融合思想,增强特征融合网络对深层、浅层以及原始特征信息的利用,减少卷积过程中重要特征信息的流失;最后,引入CBAM注意力模块到连接处位置,加强算法的特征提取能力,以使网络关注有效的信息。实验结果表明,该改进算法在公开密集行人数据集WiderPerson下的mAP相比原始算法提升0.7百分点,FPS值提升1.6 f/s,实现检测精度和检测速度的平衡。


关键词: 关键词:密集行人检测, YOLOv7, PP-LCNet, 双向特征金字塔网络, 注意力机制

Abstract:
Abstract: Aiming at the problems of low detection speed and inaccurate localization of the dense crowd detection process in complex backgrounds, a dense scene pedestrian detection method PB-YOLOv7 is proposed. Firstly, the PP-LCNet-based network is used instead of the original backbone feature network to reduce the complexity of the model computing process by utilizing the depth-separable convolution. Secondly, the feature fusion idea of the bidirectional feature pyramid network BiFPN is used to enhance the feature fusion network’s utilization of the deeper, shallower, and the original feature information, and to reduce the loss of the important feature information in the process of convolution. Finally, the CBAM attention module is introduced to the junction location to enhance the feature extraction capability of the algorithm in order to make the network more concerned about the effective information. The experimental results show that the improved algorithm improves the mAP by 0.7 percentage points and the FPS value by 1.6 f/s compared with the original algorithm under the publicly available dense pedestrian dataset WiderPerson, realizing the balance between detection accuracy and detection speed.

Key words: Key words: intensive pedestrian detection, YOLOv7, PP-LCNet, bidirectional feature pyramid network, attention mechanism

中图分类号: