计算机与现代化 ›› 2025, Vol. 0 ›› Issue (07): 97-105.doi: 10.3969/j.issn.1006-2475.2025.07.014

• 算法设计与分析 • 上一篇    下一篇

HGAT:基于混合图注意力网络的多变量时序异常检测

  


  1. (1.南京南瑞工业控制技术有限公司,江苏 南京 210031; 2.南京佳强久视科技有限公司,江苏 南京 210031)
  • 出版日期:2025-07-22 发布日期:2025-07-22
  • 作者简介: 作者简介:魏青松(1997—),男,安徽六安人,助理工程师,硕士,研究方向:计算机视觉,E-mail: snowlylone@163.com; 王晓峻(1974—),男,江苏南京人,教授级高级工程师,硕士,研究方向:软件工程,E-mail: wangxiaojun@139.com; 魏源(1987—),男,山西长治人,高级工程师,硕士,研究方向:轨道交通自动化,E-mail: weiyuan@sgepri.sgcc.com.cn; 曾尚琦(1994—),男,江苏徐州人,工程师,硕士,研究方向:数据挖掘,E-mail: zengshang2@126.com; 方园(1997—),女,安徽芜湖人,助理工程师,硕士,研究方向:模式识别,E-mail: monafy@163.com。
  • 基金资助:
     基金项目:国家重点研发计划项目(2021YFB2401300); 江苏省产业前瞻与关键核心技术重点项目(BE2020081-1)

HGAT: Multivariate Time Series Anomaly Detection Based on Hybrid Graph Attention Network


  1. (1. NARI Industrial Control Technology Co., Ltd., Nanjing 210031, China;
    2. Nanjing Jiaqiang Jiushi Technology Co., Ltd., Nanjing 210031, China)
  • Online:2025-07-22 Published:2025-07-22

摘要: 摘要:在许多复杂的系统中,设备通常被网络传感器和执行器监控并产生大量的多元时间序列。如何精确地捕获传感器之间的复杂关系,并针对偏离这些关系的异常情况进行检测与阐释,已成为当前技术领域亟待攻克的难题。为了充分利用时空依赖关系和增强异常的可解释性,本文提出一种基于混合图注意力网络的多变量时间序列异常检测(HGAT)方法。首先,HGAT使用嵌入向量相似性构建特征图注意力网络(F-GAT)和时间图注意力网络(T-GAT)。然后,通过并行地应用F-GAT和T-GAT这2个图注意力层来学习特征维度和时间维度的非线性依赖关系。最后,HGAT联合优化基于预测和基于重构的模型,利用联合优化后计算的异常分数识别异常,以增强异常检测的可解释性。在SWaT、WADI和SMD数据集上的实验结果表明,HGAT优于最佳基线方法GDN,其F1分数分别提高了2.73百分点、3.39百分点和0.9百分点。

关键词: 关键词:多变量时间序列, 异常检测, 图神经网络, 注意力机制

Abstract: Abstract: In many complex systems, devices are typically monitored by network sensors and actuators, generating a large amount of multivariate time series data. Accurately capturing the intricate relationships among sensors and detecting and elucidating anomalies that deviate from these interconnections has become a critical challenge that the current technological field must address. To fully utilize the spatial-temporal dependency relationships and enhance the interpretability of anomalies, this paper proposes a method of Multivariate Time Series Anomaly Detection Based on Hybrid Graph Attention Network (HGAT). Firstly, HGAT constructs a Feature Graph Attention Network (F-GAT) and a Temporal Graph Attention Network (T-GAT) using embedding vector similarity. Subsequently, the non-linear dependency relationships of variable dimensions and temporal dimensions are learned by parallelly applying the two graph attention layers, F-GAT and T-GAT. Finally, HGAT facilitates the co-optimization of the prediction-based and reconstruction-based models. It employs the anomaly scores derived from this collaborative optimization to delineate aberrant instances, thereby enhancing the explicability of the anomaly detection mechanism. Empirical evaluations conducted on the SWaT, WADI, and SMD datasets demonstrate that the proposed HGAT algorithm exhibits superior performance compared to the state-of-the-art baseline, the GDN method, yielding enhancements in the F1 metrics by 2.73 percentage points, 3.39 percentage points, and 0.9 percentage points for each dataset, respectively.

Key words: Key words: multivariate time series, anomaly detection, graph neural networks, attention mechanism

中图分类号: