计算机与现代化 ›› 2025, Vol. 0 ›› Issue (07): 28-32.doi: 10.3969/j.issn.1006-2475.2025.07.005

• 网络与通信 • 上一篇    下一篇

基于RA-CNN与ResNet的安卓恶意应用检测

  

  1. (中国民用航空飞行学院计算机学院,四川 广汉 618307)

  • 出版日期:2025-07-22 发布日期:2025-07-22
  • 作者简介: 作者简介:华漫(1976—),男,湖北武汉人,教授,博士,研究方向:计算机视觉,网络空间安全,民航信息安全,E-mail: huaman@cafuc.edu.cn; 通信作者:刘小亮(2000—),男,江西吉安人,硕士研究生,研究方向:网络安全,深度学习,数据安全,E-mail: 2337352357@qq.com。
  • 基金资助:
    基金项目:四川科技厅重点研发项目(2023YFG0171); 中央高校基本科研业务费重点项目(24CAFUC01009)

Android Malicious Application Detection Based on RA-CNN and Residual Network


  1. (School of Computer Science, Civil Aviation Flight University of China, Guanghan 618307, China)
  • Online:2025-07-22 Published:2025-07-22

摘要: 摘要:近年来,基于字节码图像与深度学习的安卓恶意软件检测方法日益流行,但这类方法存在特征提取受限,对噪声数据敏感的问题。针对这一问题,本文提出一种融合残差网络(ResNet)与递归注意力卷积神经网络(RA-CNN)的检测方法。该方法首先从软件样本中提取DEX、XML与ARSC这3种字节码文件并将其映射为RGB图像,而后利用嵌入残差结构的卷积神经网络进行特征抽象与提取,随之注意力建议子网络(APN)以特征图作为参考从粗到细迭代地生成局部区域注意力,而更精细的尺度网络以循环的方式从之前的尺度中放大被关注的区域作为下一尺度的输入,通过多尺度学习后实现分类。实验表明,与类似的基于字节码图像方法相比,该方法在多种指标上均有所提升,准确率达到了98.28%。



关键词: 关键词:递归注意力网络, 残差网络, XML文件, ARSC文件, 字节码图像

Abstract:
Abstract: In recent years, Android malware detection methods based on bytecode images and deep learning have become increasingly popular, but such methods have the problems of limited feature extraction and sensitivity to noise data. To solve these problems, this paper proposes a detection method of fusion Residual Network (ResNet) and Recursive Attention Network (RACNN). In this method, three bytecode files of DEX, XML and ARSC are extracted from the software samples and mapped to RGB images, and then the convolutional neural network embedded in the residual structure is used for feature abstraction and extraction. Subsequently, the Attention Suggestion Sub-Network (APN) uses the feature map as a reference to iteratively generate local region attention from coarse to fine. Meanwhile, the finer scale network magnifies the region of interest from the previous scale as the input of the next scale in a cyclic manner, and realizes classification through multi-scale learning. Experiments show that compared with similar bytecode-based image methods, the proposed method has improved in some indicators, the accuracy reaches 98.28%.

Key words: Key words: recurrent attention network, residual network, XML file, ARSC file, bytecode image

中图分类号: