计算机与现代化 ›› 2025, Vol. 0 ›› Issue (07): 15-20.doi: 10.3969/j.issn.1006-2475.2025.07.003

• 图像处理 • 上一篇    下一篇

基于ConvNeXt和注意力的多动症分类

  


  1. (1.安徽医科大学生物医学工程学院,安徽 合肥 230012; 2.安徽医科大学人文医学院,安徽 合肥 230032) 
  • 出版日期:2025-07-22 发布日期:2025-07-22
  • 作者简介: 作者简介:汪涛(1998—),男,安徽宣城人,硕士研究生,研究方向:医学图像处理,E-mail: 766771819@qq.com; 通信作者:吴茜(1985—),女,安徽蚌埠人,副教授,博士,研究方向:图像处理,E-mail: wuqian@ahmu.edu.cn。
  • 基金资助:
     基金项目:安徽省高校科学研究项目(2022AH050660)

ADHD Classification Based on ConvNeXt and Attention 

  1. (1. College of Biomedical Engineering, Anhui Medical University, Hefei 230012, China;
    2. College of Humanities, Anhui Medical University, Hefei 230032, China) 
  • Online:2025-07-22 Published:2025-07-22

摘要: 摘要:注意缺陷与多动障碍(Attention Deficit and Hyperactivity Disorder, ADHD)俗称多动症,是一种常见的儿童行为异常性疾病。由于目前多动症尚无明确病因,且多动症患者与正常儿童的脑部结构仅存在细微差异,导致临床医生难以进行有效诊断。针对此类疾病,本文提出一种基于ConvNeXt和注意力机制的卷积神经网络,用于区分多动症患者和正常儿童。首先对结构磁共振图像进行预处理,其次加载预训练模型,通过包含多维协作注意力的ConvNeXt网络进行深层特征提取,重构ConvNeXt输出层并得到最终分类结果。在ADHD-200数据集上进行验证,实验结果表明,其分类准确性达到97.3%,优于目前的主流方法,并且模型的热力图提示了前额叶等与疾病相关的脑部区域,因此可以作为一种有效、便捷的多动症辅助诊断方法。

关键词: 关键词:多动症, ConvNeXt, 图像分类, 磁共振成像


Abstract:
Abstract: Attention Deficit and Hyperactivity Disorder (ADHD), commonly known as ADHD, is a common behavioral disorder in children. Since there is no clear etiology for ADHD, and there are only subtle differences in the brain structure between ADHD patients and normal children, which makes it difficult for clinicians to make effective diagnosis. For such disorders, a convolutional neural network based on ConvNeXt and attentional mechanisms is proposed for distinguishing ADHD patients from normal children. Firstly, the sMRI is preprocessed, secondly, the pre-trained model is loaded, the deep feature extraction is performed by the ConvNeXt network containing multidimensional collaborative attention, the ConvNeXt output layer is reconstructed and the final classification results are obtained. Validated on the ADHD-200 dataset, the experimental results show that its classification accuracy reaches 97.3%, which is better than the current mainstream methods, and the heat map of the model suggests the prefrontal lobe and other brain regions related to the disease, so it can be used as an effective and convenient auxiliary diagnosis method for ADHD.

Key words: Key words: ADHD, ConvNeXt, image classification, magnetic resonance imaging

中图分类号: