计算机与现代化 ›› 2024, Vol. 0 ›› Issue (07): 1-6.doi: 10.3969/j.issn.1006-2475.2024.07.001

• 人工智能 •    下一篇

单条件三元概念构建及其融合推荐应用


  

  1. (1.西南石油大学计算机与软件学院,四川 成都 610500; 2.西南石油大学石油与天然气工程学院,四川 成都 610500)
  • 出版日期:2024-07-25 发布日期:2024-08-07
  • 基金资助:
    国家自然科学基金资助项目(62006200, 61976245); 中央引导地方科技发展专项项目(2021ZYD0003)

Construction of Single-condition Triadic Concept and Its Fusion Recommendation Application

  1. (1. School of Computer Science and Software Engineering, Southwest Petroleum University, Chengdu 610500, China;
    2. Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China)
  • Online:2024-07-25 Published:2024-08-07

摘要:
摘要:三元概念分析已被引入推荐系统领域,但是概念融合环节增加了三元概念的构建复杂度,另外概念信息在推荐时未得到充分利用。本文直接利用单条件三元概念进行推荐,为此设计一种针对单条件三元概念的构建方法和融合推荐算法。首先分解三元背景为多个单条件三元背景,设计概念比例作为启发式信息生成单条件三元概念;接着计算待推荐项目在单条件三元概念上的项目流行度,并结合三元背景的项目条件权重设计融合推荐置信度;最后结合项目的融合推荐置信度和推荐阈值,为目标用户进行推荐预测。本文在6个公开数据集中进行了实验,结果表明在稀疏度较低的数据集上,本文提出的算法相比GRHC和GreConD-kNN的推荐效果略好,与IBCF和kNN的效果相当。

关键词: 单条件三元概念, 启发式方法, 项目条件权重, 项目流行度, 融合推荐置信度

Abstract:
Abstract: Triadic concept analysis has been introduced into the field of recommendation systems. However, the fusion step of concepts increases the complexity of constructing triadic concepts, and the concept information is not fully utilized in recommendation. This paper directly uses single-condition triadic concepts for recommendation, and designs a construction method and fusion recommendation algorithm for single-condition triadic concepts. Firstly, the triadic context is decomposed into multiple single-condition triadic contexts, and the concept proportion is designed as heuristic information to generate single-condition triadic concept. Then, the popularity of the recommended items on the single-condition triadic concepts is calculated, and the fusion recommendation confidence is designed by combining the item condition weight of the triadic context. Finally, the target user is recommended by combining the fusion recommendation confidence and the recommendation threshold. This paper conducts experiments on six public datasets. The results show that on datasets with low sparsity, the algorithm proposed in this paper is slightly better than the recommendation effects of GRHC and GreConD-kNN, and comparable to the effects of IBCF and kNN.

Key words: single-condition triadic concept, heuristic method; item condition weight; item popularity; fusion recommendation confidence

中图分类号: