计算机与现代化 ›› 2024, Vol. 0 ›› Issue (10): 65-73.doi: 10.3969/j.issn.1006-2475.2024.10.011

• 算法设计与分析 • 上一篇    下一篇

基于多元级差优良化遗传算法的环境拓扑结构任务调度



  

  1. (1.南京高达软件有限公司,江苏 南京 210012; 2.中兴通讯南京研究所,江苏 南京 210012;
    3.智能决策与数字化运营工业和信息化部重点实验室,江苏 南京 211106)
  • 出版日期:2024-10-29 发布日期:2024-10-30
  • 基金资助:
    国家自然科学基金资助项目(72271122, 71871116)

Environmental Topology Task Scheduling Based on Diverse Hierarchical Difference Optimization Genetic Algorithm

  1. (1. Nanjing Caltta Software Co., Ltd., Nanjing 210012, China; 2. ZTE Nanjing Institute, Nanjing 210012, China; 3. Key Laboratory of Intelligent Decision and Digital Operations, Ministry of Industry and Information Technology, Nanjing 211106, China)
  • Online:2024-10-29 Published:2024-10-30

摘要: 在国家深入推进“东数西算”工程的背景下,算力网络中心的环境部署调度面临许多挑战,如环境的数量、大小、拓扑结构复杂度、依赖约束和网络传输量等不确定因素。为了应对这些限制因素,提出一种多元级差优良化的遗传算法(Diverse Hierarchical Difference Optimization Genetic Algorithm, DHDO-GA)。该算法以任务执行跨度makespan和资源利用率最优化为目标,同时考虑资源的负载均衡。为了更好地引导整个种群向全局最优解快速聚拢,该算法根据适应度值和相似度将染色体分布在不同的层级,并将其抽象聚类成精英种群。仿真实验表明,DHDO-GA算法优于传统遗传算法和几种改进的遗传算法,在搜索能力、算法稳定性以及结果质量和可靠性方面具有更大的优势。

关键词: 环境拓扑结构, 任务调度, 依赖约束, 遗传算法, 精英种群, Simhash

Abstract:  Under the background of the deep promotion of the “East-West Computing Requirement Transfer” project in China, the deployment and scheduling of the environment in the computing power network center faces many challenges, such as the uncertainty of the number, size, topology complexity, dependency constraints, and network transmission volume of the environment. This paper proposes a diverses hierarchical difference optimization genetic algorithm (DHDO-GA) to solve these problems. DHDO-GA aims at optimizing the task execution span makespan and resource utilization rate, while considering the load balancing of resources. In order to guide the entire population to quickly converge to the global optimal solution, DHDO-GA distributes chromosomes at different hierarchical levels based on fitness value and similarity, and abstracts and clusters them into elite populations. Simulation experiments show that the DHDO-GA algorithm is superior to traditional genetic algorithms and several improved genetic algorithms, with greater advantages in terms of search capability, algorithm stability, and result quality and reliability.

Key words: environmental topology, task scheduling, dependency constraint, genetic algorithm, elite population, Simhash

中图分类号: