计算机与现代化 ›› 2024, Vol. 0 ›› Issue (10): 14-20.doi: 10.3969/j.issn.1006-2475.2024.10.003

• 算法设计与分析 • 上一篇    下一篇

基于改进麻雀搜索算法的接地网腐蚀故障定位



  

  1. (陆军勤务学院,重庆 401311)
  • 出版日期:2024-10-29 发布日期:2024-10-30
  • 基金资助:
    国家重点研发计划项目(2016YFC0305001); 重庆市高等教育教学改革研究项目(22-3-542)

Grounding Grid Corrosion Localization Based on Improved Sparrow Search Algorithm

  1. (The PLA  Army Logistics Academy, Chongqing  401311, China)
  • Online:2024-10-29 Published:2024-10-30

摘要: 接地网是电力系统正常运行的重要组成部分,接地网的接地阻值直接关系到系统稳定、安全保护、电流整定等系列问题。接地网所用材料主要为普通碳钢或者镀锌碳钢,而接地网常年埋于地下,易发生腐蚀而造成故障,需要及时进行腐蚀故障定位并进行修复。随着电气系统的快速发展,对接地网的性能要求更加严格,这对接地网腐蚀定位的精度和准确度提出了更高要求。针对当前接地网腐蚀定位准确率不高的情况,本文提出一种基于改进麻雀搜索算法的接地网腐蚀故障定位方法(INLSSA),采用ICMIC混沌映射,融合北方苍鹰优化算法勘探阶段位置策略,并在跟随阶段加入莱维飞行扰动对麻雀搜索算法进行了改进;基于电网络理论和微量处理法建立故障诊断模型;最后利用INLSSA算法进行求解。实验结果表明,与麻雀搜索算法、北方苍鹰优化算法、灰狼优化算法、蜣螂优化算法、金豺优化算法相比,INLSSA算法能有效进行故障定位,稳定性好,准确率高,可为实际接地网故障定位所参考。

关键词: 接地网, 腐蚀故障定位, 改进麻雀优化算法, INLSSA, 微量处理法

Abstract: The grounding grid is an important component of the normal operation of the power system, the resistance value of the grounding grid is related to system stability, safety protection, and current setting directly. The materials of the grounding grid are mainly ordinary carbon steel or galvanized carbon steel and perennially underground which is prone to corrosion and failure. When the corrosion and failure of grounding grid happens, it is necessary to locate and repair corrosion faults timely. With the rapid development of electrical systems, the performance requirements of grounding grids have become stricter, which puts forward higher requirements for the precision and accuracy of grounding grid corrosion localization. In response to the current situation of low accuracy in locating corrosion of grounding grids, this article proposes an improved sparrow search algorithm for corrosion localization of grounding grids (INLSSA). The algorithm uses ICMIC chaotic mapping, integrates the northern goshawk optimization exploration phase position strategy, and incorporates Levy flight disturbances in the following phase to improve the sparrow search algorithm. We establish a fault diagnosis model based on electrical network theory and micro processing method. Finally, we use INLSSA algorithm for solution. The experimental results show that compared with sparrow search algorithm, northern goshawrk optimization algorithm, grey wolf optimizer, dung beetle optimizer, golden jackal optimization, INLSSA can effectively locate faults and has high stability and accuracy, which can be used as a reference for actual grounding grid corrosion location.

Key words: grounding grid, corrosion fault localization, improved sparrow search algorithm, INLSSA, micro processing method

中图分类号: