计算机与现代化 ›› 2024, Vol. 0 ›› Issue (05): 16-21.doi: 10.3969/j.issn.1006-2475.2024.05.004
摘要: 摘要:针对当前文档版面元素分析中存在的列表和文本错分,表格内小尺度文本难以识别以及空间特征保留效果差等问题,本文基于自底向上的思想,提出一种基于SegNet网络的多特征融合版面分析方法。本文方法在SegNet中引入MSCAN-SE模块,针对表格中的小尺度元素识别率低的问题,利用注意力机制MSCAN-SE中的条状特征来提升模型多尺度特征的提取能力,使得网络能够保留更多尺度的特征信息;针对列表元素和文本元素特征过于相似的问题,通过注意力机制MSCAN-SE中的空洞卷积以及通道注意力分支来扩大网络在特征提取过程的感受野。本文方法与经典的语义分割网络通过实验进行性能比较,结果表明:本文方法在版面分析的测试集上的像素准确率为97.9%,平均交并比为91.7%,平均交并比较U-Net语义分割模型、FCN语义分割模型、DeepLabV3+语义分割模型和SegNet语义分割模型分别提高了7.6%、2.4%、2.6%和1.5%。
中图分类号: