计算机与现代化 ›› 2023, Vol. 0 ›› Issue (07): 25-29.doi: 10.3969/j.issn.1006-2475.2023.07.005

• 人工智能 • 上一篇    下一篇

基于多特征提取的时间卷积知识追踪模型

  

  1. 1.华南师范大学计算机学院,广东 广州 510631; 2.华南师范大学广州大数据智能教育重点实验室,广东 广州 510631
  • 出版日期:2023-07-26 发布日期:2023-07-27
  • 作者简介:谢仕斌(1997-),男,广东汕头人,硕士研究生,研究方向:教育大数据,知识追踪,E-mail: 784995152@qq.com; 刘梦赤(1962-),男,教授,研究方向:大数据系统,智能信息系统,E-mail: liumengchi@scnu.edu.cn; 唐诗琪(1998-),女,广东湛江人,硕士研究生,研究方向:自然语言处理,情感分类,E-mail: 2532855590@qq.com; 周瑞平(1998-),女,四川广安人,硕士研究生,研究方向:数据库技术。
  • 基金资助:
    国家自然科学基金资助项目(61672389); 广州市大数据智能教育重点实验室项目(201905010009)

A Temporal Convolutional Knowledge Tracking Model Based on#br# Multiple Feature Extraction#br#

  1. (1. School of Computer Science, South China Normal University, Guangzhou 510631, China; 2. Guangzhou Key Laboratory of Big Data and Intelligent Education, South China Normal University, Guangzhou 510631, China)
  • Online:2023-07-26 Published:2023-07-27

摘要: 知识追踪(Knowledge Tracing, KT)是教育数据挖掘领域中的关键技术,其通过利用学生的历史学习记录来预测学生下一次的作答表现。针对基于时间卷积网络(TCN)的深度知识追踪模型存在的只使用学生答题序列和答题结果,而忽略学生其他行为特征的问题,本文提出一种基于多特征提取的时间卷积知识追踪模型TKT-PCA。使用时间卷积网络和主成分分析(Principal Component Analysis, PCA)方法自动提取多种学生作答行为中的隐藏特征并学习它们的表示,不仅降低了特征维度减少冗余信息,还充分评估了学生的知识掌握情况。实验结果表明,与其他知识追踪基线模型相比,TKT-PCA有更好的预测性能。

关键词: 深度学习, 知识追踪, 时间卷积网络, 教育数据挖掘, 智能教育

Abstract: Knowledge tracing (KT) is a key technology in the field of educational data mining. It uses students’ historical learning records to predict students’ next answer performance. Aiming at the problem that the deep knowledge tracking model based on time convolution network (TCN) only uses students’ answer sequences and answer results, and ignores other behavior characteristics of students, a deep knowledge tracking model based on multi feature extraction (TKT-PCA) is proposed. The model uses principal component analysis (PCA) method to automatically extract hidden features in a variety of students’ answer behavior and learn their representation. It not only reduces the feature dimension and redundant information, but also fully evaluates students’ knowledge mastery. The experimental results show that the TKT-PCA has the better prediction performance compared with other knowledge tracking baseline models.
Key words: deep learning; knowledge tracking; temporal convolution network; educational data mining; intelligent education

Key words: deep learning, knowledge tracking, temporal convolution network, educational data mining, intelligent education

中图分类号: