计算机与现代化 ›› 2023, Vol. 0 ›› Issue (05): 46-51.

• 算法设计与分析 • 上一篇    下一篇

工控网络异常检测中基于灵敏度的动态迁移算法

  

  1. (1.中国科学院声学研究所国家网络新媒体工程技术研究中心,北京 100190; 2.中国科学院大学电子电气与通信工程学院,北京 100049)
  • 出版日期:2023-06-06 发布日期:2023-06-06
  • 作者简介:杨骏(1994—),男,北京人,博士研究生,研究方向:工控网络安全,网络安全态势感知,异常检测,E-mail: yangjun@dsp.ac.cn; 王劲林 (1964—),男,天津人,研究员,博士生导师,硕士,研究方向:未来网络,网络安全,E-mail: wangjl@dsp.ac.cn; 倪宏(1964—),男,安徽怀远人,研究员,博士生导师,硕士,研究方向:计算机网络,网络安全,E-mail: nihong@mail.ioa.ac.cn; 盛益强(1978—),男,浙江金华人,副研究员,硕士生导师,博士,研究方向:未来网络,网络安全态势感知,机器学习,E-mail: shengyq@dsp.ac.cn。
  • 基金资助:
    中国科学院战略性先导科技专项(XDC02020400)

Dynamic Transfer Method Based on Sensitivity in Industrial Control Network Anomaly Detection

  1. (1. National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
  • Online:2023-06-06 Published:2023-06-06

摘要: 随着工控网络信息化程度的不断提高,工控网络逐渐变得更加开放,一方面给工业生产提供了便捷,但另一方面也带来了安全隐患。工控网络作为重要的基础设施,一旦受到攻击将产生严重损害。近年来不少学者使用网络异常检测技术来发现工控网络中潜在的安全隐患,取得不错的成果。然而工控网络中的数据往往缺少标注,这限制了传统监督学习类算法在工控网络安全领域的应用。基于非监督学习的算法可以在缺少标注的场景下实现异常检测,但是往往存在算法性能较差的问题,而迁移学习类算法可以通过在源域上学习后迁移到只有少量标注的目标域实现在少标注情况下的较高性能。为了进一步提高在缺少标注的工控网络中进行异常检测的性能,本文提出一种工控网络异常检测中基于灵敏度的动态迁移算法。首先该算法基于迁移学习的思想,在有标注的源域中进行训练后迁移到缺乏标注的目标域,可以在缺少标注的工控网络环境下进行异常检测。其次得益于门控循环单元的记忆效应,该算法可以有效利用工控网络数据内在的时序关联性,进一步提高算法异常检测的能力。同时该算法中的基于参数灵敏度因子对参数进行动态迁移的方法,改进了传统迁移学习微调方法对源域和目标域数据底层特征学习不均衡的不足。在KDD99数据集和Kyoto2016数据集上的对比实验表明,该算法采用的基于灵敏度的动态迁移学习方法对比传统微调方法具有更好的效果。在与最新一系列无监督与迁移学习算法的对比中,该算法在精确率、召回率和综合性的F1分数上均优于对比方法,取得了0.97、0.95、0.96的优秀性能。

关键词: 工业控制系统, 网络安全, 迁移学习, 门控循环单元, 异常检测

Abstract: With the continuous improvement of the informatization of industrial control networks, industrial control networks have gradually become more open, which on the one hand provides convenience for industrial production, but also brings security risks on the other hand. As an important infrastructure, the industrial control network will cause serious damage once it is attacked. In recent years, scholars have used network anomaly detection technology to discover potential security risks in industrial control networks, and have achieved great results. However, the data in the industrial control network often lack labels, which limits the application of traditional supervised learning algorithms in the field of industrial control network security. Algorithms based on unsupervised learning can detect anomalies in scenarios of lacking labels, but there is often a problem of poor algorithm performance, while transfer learning algorithms can get a better result by migrating to the target domain with only a few labels after learning on the source domain. In order to further improve the performance of anomaly detection in industrial control networks with few labels, this paper proposes a dynamic transfer method based on sensitivity in industrial control network anomaly detection. First of all, the algorithm is based on the idea of  transfer learning, which is trained in the labeled source domain and then migrated to the target domain with a small number of labels, which can detect anomalies in the industrial control network environment with only a few labels. Secondly, benefits from the memory effect of the GRU structure, the algorithm can effectively utilize the inherent time-series correlation of industrial control network data, which further improves the ability of algorithm anomaly detection. At the same time, the method of dynamic transfer of parameters based on parameter sensitivity factor in the algorithm improves the insufficiency of the traditional transfer learning fine-tuning method for the unbalanced learning of the underlying features of the source domain and target domain data. The comparative experiments on the KDD99 dataset and the Kyoto2016 dataset show that the dynamic transfer learning method based on the sensitivity factor adopted by the algorithm has a better effect than the traditional fine-tuning method. In comparison with the latest series of unsupervised and transfer learning algorithms, the algorithm outperforms the comparison methods in precision, recall, and comprehensive F1 score, achieving excellent performances of 0.97, 0.95, and 0.96.

Key words: industrial control system, network security, transfer learning, gated recurrent unit, anomaly detection