计算机与现代化 ›› 2023, Vol. 0 ›› Issue (05): 39-45.
摘要: 基坑安全管理是大型建筑基坑施工的关键内容,基坑结构位移预测是预防基坑支护事故的重要手段。但是由于基坑局部基坑位移成因复杂,现有的支持向量回归(SVR)、随机森林(RF)方法忽略了基坑位移随空间位移局部减弱、随时间局部位移加快增长的特点,导致预测精度不高。因此,本文提出一种融合时空注意力机制的GA-BP神经网络(A-GA-BP)方法,通过时空特征准确表示基坑位移预测的时空维度及其特征相关性,提高基坑位移预测的有效性。最后,本文以苏州市某大型工程为实例,对基坑的水平与垂直位移监测数据进行模型训练与评估,按时域特征、空域特征、多阶时域空域特征进行量化分析与研究,并与现有方法进行比较。实验结果表明,本文方法的拟合指数比其他几种方法分别提高29.19%与41.25%,多阶时空域特征相较于单独的时间域或空间域特征分别提高3.08%与1.83%。